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What types of theoretical models in ecology?

Content

1. What system? What question? What hypotheses? What model type?

2. What model formalism?

o Deterministic – stochastic processes

o Time: discrete – continuous

o Accounting for space?

3. What technical choices?

o Analytical vs Numerical

o Agent Based Models vs Equations



Landscape – Metaecosystem

Biosphere
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Metacommunity

Metapopulation
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Global Ecology

Ecology

Population biology
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Cellular and molecular
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Biochemistry

Evolutive biology

What scale?
What process?

[do we want to model]

What can we ignore?

1. What system? What question? What hypotheses? 



How does grazing impact plant diversity?
Herbivore preferences, plants relative growth, etc.

How do resources regulate population growth?
Intra-specific competition, pop level rates, etc.

Can grazing increase primary production?
Ecosystem fluxes, recycling, etc.

Can spatial heterogeneity promote plant diversity?
Spatial connectivity, dispersal rates, etc.Example: landscape with plants and herbivores

©govdelivery

System + Question → Scale →What can we ignore? →What assumptions do we make?
→ Variable + Processes

Which factors determine individuals development?
Physiology, morphology, behavior, life-cycle etc

Individuals

Population

Community

Ecosystem

Landscape

1. What system? What question? What hypotheses? 



This is neither the aim nor relevant to model all details. 
Some processes are much faster or much slower than focal ones and can be considered constant.
Example: the upper  level is often slower than those below and impose constraints

©govdelivery

©govdelivery

Physiology question
=>  ignore tree 
dynamics

Long term population 
dynamics
=>  include  tree 
mortality dynamics

©Bruno de Giusti

©Unsplash

Year-scale fish population  dynamics
=>  ignore human demography

Century-scale fish
population  dynamics
Þ include human demography
(variation in catch effort)

System + Question → Scale →What can we ignore? →What assumptions do we make?
→ Variable + Processes

1. What system? What question? What hypotheses? 



Assumptions Model
(= mathematical formulation of 
assumptions or series of rules)

Analysis
(mathematical

method)
(simplification 
of the system)

(truth according to 
assumptions)

Prediction

overinterpretation

!
Types of assumptions

Ø critical: crucial to test the verbal hypothesis

Ø exploratory: important to vary and test but not core to the verbal hypothesis  

Ø logistical: those important for tractability
(Servedio et al. 2014)

System + Question → Scale →What can we ignore? →What assumptions do we make?
→ Variable + Processes

1. What system? What question? What hypotheses? 



Types of assumptions

Ø critical: crucial to test the verbal hypothesis

Ø exploratory: important to vary and test but not core to the verbal hypothesis  

Ø logistical: those important for tractability
(Servedio et al. 2014)

Hypothesis: Herbivory can maximize primary production if herbivore recycling path is faster than plant ones

(de Mazancourt et al. 1998 Ecology)

Producer

Herbivore

D

D

Nutrient

=> 2 paths of recycling

=> ODE deterministic

functional 
response

(donor vs
recipient

controlled)

=>

©Joan Coasta

Question: Can grazing increase primary production?

!

System + Question → Scale →What can we ignore? →What assumptions do we make?
→ Variable + Processes

1. What system? What question? What hypotheses? 



Simplification
approaches

Meta-community
models

Levin’s model

Meta-ecosystem
models

Lotka-Volterra
Allometric

Foodweb models

Simplification

Process-based [simple] models

• Generalize

• Understand

• Extrapolate

1. What model type?

Simplification approaches
• Weak processes

• Large number theory 

• Fast-slow processes 



1. Do we need deterministic or stochastic dynamics?

2. Do you model time or not ? Are processes continuous or discrete in time?

3. Do we need to consider space explicitly?

2. What model formalism?



2. What model formalism? (1) Stochastic /Deterministic

What is stochasticity?
What sort of stochasticity counts in ecology?

- trait variability

- environmental stochasticity

When should we account for it?

© Luc Farrell

- demographic stochasticity



Example: random demographic events

2. What model formalism? (1) Stochastic /Deterministic



Example: random demographic events

2. What model formalism? (1) Stochastic /Deterministic



Example: random demographic events

→ care of the mean only
→ good approximation

2. What model formalism? (1) Stochastic /Deterministic



Example: random demographic events

- Randomness large compared to population 
size (e.g., small populations)

2. What model formalism? (1) Stochastic /Deterministic



Example: random demographic events

- Randomness large compared to population 
size (e.g., small populations)

2. What model formalism? (1) Stochastic /Deterministic



Example: random demographic events

- Randomness large compared to population 
size (e.g., small populations)

→ wrong prediction

2. What model formalism? (1) Stochastic /Deterministic



Deterministic modelsStochastic models
Randomness of processes is important

When we have small numbers (integers 
relevant), which makes stochastic processes 
important relative to mean

→ Ex: Questions of viability of small populations

→ Ex: IBM models or SDE
See models in day 3 and 4 (Matthieu)

→ Ex: Deterministic ODE
See models in day 2 and 4

When processes can be summarised with 
average parameters, variance is small compared 
to mean: mean growth rate, mass action law

The noise can be ignored

→ For large populations

©Dr Horst Neve / Max Rubner Institut

2. What model formalism? (1) Stochastic /Deterministic



If dynamic, when might we use discrete or continuous-time formalism?

We have static versus dynamic models: does our question require time?

?
birth,
death,
migration,
etc.

A population What happens along time?

2. What model formalism? (2) Time

→ Ex: static trophic networks versus dynamic food web models (see day 4)



∆t ∆t ∆t
Discrete time

Synchronization of events 

Time

t

2. What model formalism? (2) Time

Continuous time

Events happen at any time 

If dynamic, when might we use discrete or continuous-time formalism?

We have static versus dynamic models: does our question require time?
→ Ex: static trophic networks versus dynamic food web models (see day 4)



Discrete time models
Events are synchronized

– Questions linked to the phenology
– Complex life cycles
– Synchronized generations
– Seasonal dynamics

©Dr Horst Neve / Max Rubner Institut©Jose Jeevan

→ discrete time models where the time interval is very small boil down to continuous model

→ discrete or continuous time models can be either stochastic or deterministic

→ See models in day 2 (discrete), 3, 4 (continuous)

Continuous time models

– Processes happen continuously
– Generations overlap

Everything can happen at any time

2. What model formalism? (2) Time



When is space important to describe your system and answer your question?

In population models, space is 
often integrated  in the unit, 
e.g., ind./km2 or ind./m3 or 

abundance in a given habitat 
of specific size

All ecological systems occur in space

2. What model formalism? (3) Space



Does diversity depend on spatial dynamics? Does spatial patterns emerge from local dynamics?

© Christian Torgeson

© Nicolas BarbierWhen is space important to describe your system and answer your question?

When interactions are localized, heterogeneously distributed in space.

2. What model formalism? (3) Space



Does geographical position matter?

Space implicit: topology only

(Levins 1969, Leibold et al. 2004)

Space explicit: distances, geographical location

→ See models in day 3

2. What model formalism? (3) Space

Distant locations
Fragmented landscapes
Connectivity structure effects

Grids
Spatial patterns

Discrete space Continuous space
Continuous space (PDE)
Environmental gradient, edge 
effects, invasion front

(Carraro et al  2020) (Fisher KPP 1937)(Kéfi et al  2007)



1. Agent Based Models vs Equations

2. Analytical vs Numerical

3. What technical choices?



– Variables are individuals or agents (integers)

– Processes (birth, death, dispersal) are 

formulated as a series of rules  involving 

probabilities, applied to each agent. 

Dynamical equationsIBM – ABM

3. What technical choices? (1) rules vs maths

– Variables are population densities / biomasses 

(decimals)

– We use maths

– Processes are embedded into parameters



Dynamical equationsIBM – ABM

– Simplification with math approximations

– Large analysis power for extreme case

– Fast computation: lower C footprint

– Easier to fit to data

– Imposed relations between variables

– Math skills required

3. What technical choices? (1) rules vs maths

– Modelled objects & relations = assumptions 

(without approximations)→ complex 

behavior easier to represent

– No need for math skills

– Computation time & resources

– Coding skills required



Analytical versus simulation models

3. What technical choices? (2) Analytical vs simulations
→ Parsimony provides analytical power

A given model



How to build a model?

Content

0. What is the question? 

1. Sketch your system and choose your formalism

2. Identify the assumptions in a classical theoretical model

3. Code the model in R: principle of numerical integration

4. Explore the model

you



1. Sketch your system

And Choose your formalism

What are your variables?

How are they connected?  Which processes do you integrate?

What formalisms in terms of stochasticity, time, space?

What assumptions on modelled processes?   

0. What is your question?



General assumptions from formalism Assumptions from mathematical formulations

2. Identify assumptions in theoretical models

r0 growth rate
K carrying capacity
a attack rate
h handling time
mmortality rate
ε conversion efficiency

Rosenzweig-MacArthur model (1963)

– Populations are sufficiently large for their 
biological rates to be approximated with 
averaged parameters: within a population, all 
individuals identical

– Generations overlaps in time
– Space is homogeneous

– Resources for producers are limited and resource dynamics are much 
faster than population dynamics

– There is no recycling feedback
– Mass action law: encounter rates are proportional to densities
– Herbivore consumption saturates through time needed to manipulate 

food
– Herbivores dies without producers (metabolic needs)
– Only a part of herbivore consumption is converted into new biomass

x



3. Code the model: principle of numerical integration

A given dynamics

• The error depends on time interval and the type of dynamics

✕

• Numerical integration is a recursive process: 

approximate the system from the previous time step

• A simple algorithm for ODEs: the Euler method



3. Code the model: principle of numerical integration

A given dynamics

• The error depends on time interval and the type of dynamics
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• A simple algorithm for ODEs: the Euler method



3. Code the model: principle of numerical integration

A given dynamics

• The error depends on time interval and the type of dynamics

• Numerical integration is a recursive process: 

approximate the system from the previous time step

• A simple algorithm for ODEs: the Euler method



3. Code the model: principle of numerical integration

A given dynamics

• The error depends on time interval and the type of dynamics

• Mathematicians proposed different algorithms to minimize the error depending on the problem.

• These algorithms are implemented into solvers. Some have adaptive time steps with error tolerance.

• Numerical integration is a recursive process: 

approximate the system from the previous time step

• A simple algorithm for ODEs: the Euler method



3. Code the model: principle of numerical integration

A given dynamics

• The error depends on time interval and the type of dynamics

• Mathematicians proposed different algorithms to minimize the error depending on the problem.

• These algorithms are implemented into solvers. Some have adaptive time steps with error tolerance.

• In R we can use the function ode of the package deSolve

• Numerical integration is a recursive process: 

approximate the system from the previous time step

• A simple algorithm for ODEs: the Euler method



Ø Mathematicians proposed different algorithms to minimize the error depending on the problem.

Ø These algorithm are implemented into solvers. Some have adaptive time steps with an error tolerance.

Ø In R we can use the function ode of the package deSolve

3. Code the model: principle of numerical integration

Rosenzweig-MacArthur model (1963)



4. Explore the model

- Modify the initial conditions. Is the long term result changing?

- Modify the parameters

- Which strategy to explore the model and answer our question?



How to analyse a theoretical model?

Content
1. General analysis

• Equilibria
• Local stability analysis (Jacobian matrix)
• Bifurcation diagrams
• Dependence to initial conditions

2.  Simulation strategies
• Parameter exploration 
• Model comparison
• Experiments with synthetic data
• Robustness of conclusions  



Analytical study

Numerical analysis



1. General analysis (1) Equilibria

The Rosenzweig-MacArthur model (1963) x

• First Step : Determine the Equilibria,  solve:

• Graphically it’s nullclines intersections:

• for  P growth

• for H growth

Phase plane 



1. General analysis (1) Equilibria

The Rosenzweig-MacArthur model (1963) x

• First Step : Determine the Equilibria,  solve:
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1. General analysis (1) Equilibria

The Rosenzweig-MacArthur model (1963)

• First Step : Determine the Equilibria,  solve:

• Feasibility criteria
• Interpretation on parameters

• Symbolic calculus (Maxima, Mathematica, Matlab)

• In R we can get the numerical calculation of equilibria with 

the function  stode of the package rootSolve or with the 

function  searchZeros of the package nleqslv

When tractable, expresses P* and H* with the 

parameters (symbols) → general expression  



Phase portraits, typology of trajectories and stability for 2-equations models, some examples:

Monotonous trajectories Oscillatory trajectories

Stable node Unstable node Stable spiral Unstable spiral

Neutral center Limit cycleUnstable saddle point

For a 2-equation system
in continuous time

1. General analysis (1) Equilibria



1. General analysis (2) Local stability analysis

Determine the stability of each equilibrium by analyzing the Jacobian matrix at the equilibrium  

*

Pt

Ht

P*

H*
δH

δP P

H

with

Stability analysis = examining eigenvalues of J   (real or complex numbers)

Stability criterium: Stable when the real parts of eigenvalues are negative



1. General analysis (2) Local stability analysis

J from the function  fully.jacobian and λ from the function eigen (package rootSolve)

Eigenvalues

*

Pt

Ht

P*

H*
δH

δP P

H

Determine the stability of each equilibrium by analyzing the Jacobian matrix at the equilibrium  

Equilibrium

Stability analysis = examining eigenvalues of J   (real or complex numbers)

Stability criterium: Stable when the real parts of eigenvalues are negative



Monotonous trajectories Oscillatory trajectories

Stable node Unstable node

Unstable saddle point

Stable spiral Unstable spiral

Neutral center Limit cycle

eigenvalues are real (𝜆 ∈ ℝ,)

1. General analysis (2) Local stability analysis

eigenvalues are complex (𝜆 ∈ ℂ)

− −

− +

+ + −𝑎 ± 𝑖𝑏 −𝑎 ± 𝑖𝑏 +𝑎 + 𝑖𝑏 +𝑎 ± 𝑖𝑏

0 ± 𝑖𝑏 0 ± 𝑖𝑏 +𝑎 ± 𝑖𝑏 +𝑎 ± 𝑖𝑏

For a 2-equation system
in continuous time



1. General analysis (2) Local stability analysis

𝑚 = 4

(1)

(2)

(3)

𝜆! = 0.5	 𝜆" = −0.4

𝜆! = −0.5	 𝜆" = 0.153

𝜆! = −0.023 + 𝑖0.234
𝜆" = −0.023 − 𝑖0.234

Stable equilibrium



Stable equilibrium Limit cycle

1. General analysis (2) Local stability analysis

𝑚 = 4 𝑚 = 3.5

𝜆! = +0.002 + 𝑖0.253
𝜆" = +0.002 − 𝑖0.253

𝜆! = −0.023 + 𝑖0.234
𝜆" = −0.023 − 𝑖0.234



Stable equilibrium Limit cycle

1. General analysis (2) Local stability analysis

𝑚 = 4 𝑚 = 3.5

𝜆! = +0.002 + 𝑖0.253
𝜆" = +0.002 − 𝑖0.253

𝜆! = −0.023 + 𝑖0.234
𝜆" = −0.023 − 𝑖0.234



Stability

unstable
stable

1. General analysis (3) Bifurcation diagrams

How does long-term (asymptotic) behaviour of the system vary with one parameter ?

Variables

Eq (2) Eq (3)

Hopf bifurcation

stable
node

limit
cycle



Stability

1. General analysis (3) Bifurcation diagrams

How does long-term (asymptotic) behaviour of the system vary with one parameter ?

Variables

Eq (2) Eq (3)

Hopf bifurcation

stable
node

limit
cycle



1. General analysis (4) Dependance to initial conditions

Ø We can observe several equilibrium points for the same parameters (historical effects)

Ø Example of Lotka-Volterra competition only initial densities differing:

Ø Screen series of initial densities to find all the equilibria using searchZeros in nleqslv



1. Parameter exploration

2. Model comparison

3. Robustness of conclusions

4. in sillico experiment on synthetic data

2. What simulation strategy?



2. Simulation strategy (1) Parameter exploration

• Generalisation of bifurcation diagrams with 2-D parameter space exploration.
• The aim is to identify all the possible behaviors of the model 

within 'reasonable' parameter ranges

• h should be sufficiently small, for H to persist

• Increasing a allows to compensate high h

• Increasing a destabilizes the system

Here we vary h the handling time and
a the grazing rate



2. Simulation strategy (1) Parameter exploration

• Generalisation of bifurcation diagrams with 2-D parameter space exploration.
• The aim is to identify all the possible behaviors of the model 

within 'reasonable' parameter ranges



2. Simulation strategy (2) Model comparison
Here we compare models with different functional responses for the herbivore

In our system a type I (linear) increases persistence and stability compared to a type II (saturating) 
functional response because it creates a lag between P and H growths.



• Sampling strategies (coverage / interpretability / cost): 

• One factor at a time; empirical data fix some parameters or restrain ranges.

• Complete plan

• Latin Hypercube sampling / Sobol 

• Sensitivity analysis:

• Check the sensitivity of the results to variation in parameters ± 10%

• Methods to discard factors for further experiments (Morris / Saltelli)
Refs: Saltelli et al. (2004). Sensitivity analysis in practice: a guide to assessing scientific models. Chichester, England. 
Campolongo et al. (2011). From screening to quantitative sensitivity analysis. a unified approach. Computer Physics 
Communications, 182(4):978–988. 

2. Simulation strategy (3) Robustness of conclusions



2. Simulation strategy (4) Experiments with synthetic data

Complex system experiments not feasible in nature → create realistic virtual data, for example  
food webs having the same general properties as natural food webs, to do perturbation 
experiments and observe how this would  modify  food we structure.
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