Predicting the risk of establishment of the invasive beetle *Popillia japonica* in Europe

Davide MARTINETTI – INRAE, UR BioSP – Avignon Theory-driven Analysis of Ecological Data - FRB-CESAB Montpellier, April 5th, 2023

Theory-driven Analysis of Ecological Data

More serious outline

- 1. The 4 "W" of *Popillia japonica*
 - Who? Where? When? Why?
- 2. Species distribution model with opportunistic citizen-science data
 - Presence-only data
 - Opportunistic data
 - SDM
 - Results
- 3. A reaction-diffusion model and its observation process
 - The mechanistic model
 - The statistical model

Who Popillia japonica

Japanese beetle

Scientific classification 🥖 Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Coleoptera Scarabaeidae Family: Genus: Popillia Species: P. japonica **Binomial name** Popillia japonica

Newman, 1841

Surveillance & containment strategies

- React fast
- Detect as early as possible
- Eradicate when possible
- Constraints
 - Money
 - Time
 - Coverage

OPPORTUNISTIC CITIZEN-SCIENCE DATA

OPPORTUNISTIC DATA

Legend

Presence

Presences

(Popillia japonica) 6844 cells

Pseudo-absences

(Coleoptera) 49010 cells

• Opportunistic data are abundant and ready to use...

• ... but suffer from sampling bias

Solution: Pseudo-absences using **target-group**¹ strategy

- Higher taxonomic level
- Same observers
- Same dates/period

PRESENCE-ONLY

DATA

Legend

Presence

Neighbour

p. 22

Pomérols

1. You may trust presence data...

2. ...but generate pseudo-absences wisely

SPECIES DISTRIBUTION MODEL

> Species Distribution Models

$Y = f(X,\epsilon)$

- $Y \in \{0,1\}$: presence or (pseudo-)absence of a certain species
- $X \in \mathbb{R}^n$: covariates
- ϵ : some kind of error
- $f: \mathbb{R}^n \to [0,1]$: some kind of function

> Covariates

> All my data

Choice of the algorithm

BIOCLIM = Bioclimatic Analysis GLM = Generalized Linear Model GAM = Generalized Additive Model MARS = Multivariate Adaptive Regression Splines BRT = Boosted Regression Tree RF = Random Forest

Good for unbalanced datasets ¹ Estimation of variable importance ² Robust against multicollinearity ³

Random forest in a nutshell...

20°C

Temperature

Random forest in a nutshell...

Presence	Var_1	Var_2	 	•••	Var_132	Var_133
Yes						
No						
Yes						
Yes						
No						

> Model training

Train data from native and long-invaded regions since newly invaded regions may reflect dispersal limitations rather then real unsuitability

Elith et al. (2010) p. 31

Cross-validation strategy

Roberts et al. (2017)

7 blocks according to environmental distance

Ploton *et al*. (2020) Valavi *et al*. (2019) p. 32

> Machine learning

How to go from probability in [0,1] to binary {0,1}?

Boyce Predicted to Expected ratio (P/E ratio)

Boyce *et al.* (2002)

р. 35

U.S. Domestic Japanese Beetle Harmonization Plan

REACTION-DIFFUSION MODEL **S OBSERVATION**

DESERVATION PROCESS

> The reaction-diffusion equation

$$\frac{\partial V(x, y, t)}{\partial t} = DV(x, y, t) + R(x, y)V(x, y)$$
$$V(x, y, 0) = I_{2015}$$

- V(x, y, t) = concentration of PJ in (x, y) at time t
- *D* = diffusion coefficient
- $R(x,y) = -\frac{1}{\mu} + \sum_{i=0}^{5} \beta_i \mathbf{1}_i(x,y) :$
 - μ = life expectancy
 - β_i = birth rate depend on suitability class at location β_i

> Observation process

> Parameter estimation

 $V(\theta, t)$ for parameter θ at time t $\theta = (D, \beta_i) =$ diffusion & birth rate

• O(t) = observed presences at time t

> Thanks

https://www.popillia.eu/

Leyli Borner PostDoc, INRAE, UR IGEPP, Rennes

Sylvain Poggi Researcher, INRAE, UR IGEPP, Rennes

References

- **1.** Barbet-Massin et al. (2012). Selecting pseudo-absences for species distribution models: How, where and how many?
- 2. Boyce et al. (2002). Evaluating resource selection functions. Ecological modelling.
- **3.** Elith et al. (2010). The art of modelling range-shifting species.
- **4.** Freeman et al. (2016). Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance.
- 5. Genuer et al. (2010). Variable selection using random forests.
- **6. Hirzel et al. (2006)**. Evaluating the ability of habitat suitability models to predict species presences.
- **7. Phillips et al. (2009)**. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data.
- **8. Ploton et al. (2020)**. Spatial validation reveals poor predictive performance of large-scale ecological mapping models.
- **9.** Roberts *et al.* (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure.
- **10.** Roques & Bonnefon (2016). Modelling population dynamics in realistic landscapes with linear elements: A mechanistic-statistical reaction-diffusion approach.
- **11.** Valavi *et al.* (2018). *blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models.*
- **12.** Valavi *et al.* (2021). Predictive performance of presence-only species distribution models: a benchmark study with reproducible code.

> Presence data

	Official surveillance ¹	Citizen Science ²	TOTAL
Europe	11,777	2,845	14,622
USA & Canada	962	29,498	30,460
TOTAL	12,739	32,343	45,082

Type of data	Count	٦
Presence of PJ	4,206	
No observation	9,126,667	ľ
TOTAL	9,134,770	J

Aggregated 4km

¹ From Italy, Switzerland, Portugal, Canada and US p. 44 ² Including GBIF & iNaturalist web platforms (as of November 2020)

> Pseudo-absence data: the target-group method

How to create absence data with the same sampling bias as presence data

Sampling bias in presence-only data from citizen science

- Bias towards of eye-catching, emblematic or newly-introduced species
- Positive bias towards urban & recreational areas and negative bias towards remote areas
- Lack of transect w.r.t. relevant bio-physical factors

Target group method (Ponder et al. 2001, Anderson 2003, Phillips et al. 2009)

Create pseudo-absences from a set of species that may have the same sampling bias => the target group

For the case of *Popillia japonica*, we used the broader order of *Coleoptera*

Type of data	Count
Popillia japonica	4,206
Coleoptera	49,000
No observation	9,126,667

No validation measures based on **confusion matrix:** problems with true negative and false positive

Boyce *et al.* 2002, Hirzel *et al.* 2006