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Points of this lecture:

We always think that simple system = small system
(e.g. only study one species in isolation, or a pair)

In fact, it is possible to be large (many-species...) and still simple

Complexity with simple consequences is (or can be modelled by)
“randomness”

Small and large simplicity are both wrong, but both are valid starting
points, and they can be combined to model reality
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I. Introduction: Complexity and simplicity
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Where to put complexity

Basic question of modelling: which details are important to include?

whenever we write a simple model in biology, we are hiding complexity

is there a principled way of understanding when this is a valid choice?
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Imagine if we only tracked colors? (grouping all lifeforms of same color)

d Red

dt
= aRed + b Blue (1)

Seems absurd (except maybe green for photosynthesis) but why exactly?
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Lotka-Volterra model

For instance, take our favorite dynamical model:

dNi

dt
= riNi

1−
∑
j

aijNj

 (2)

why species abundances and interactions, rather than

individual movement, size, social and sexual behavior
genes, proteins
nutrient fluxes, biochemical processes (redox, denitrification...)
...
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Lotka-Volterra model

dNi

dt
= riNi (1−

∑
j

aijNj) (3)

choice guided by what we can measure e.g. abundance time series
(more available than social behavior time series)

but not only: colors are probably easier to observe than species
abundances
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Lotka-Volterra model

dNi

dt
= riNi (1−

∑
j

aijNj) (4)

⇒ assumptions about which processes are important & independent

species growth & interactions are important forces

(Ni is not fixed by some other force like human experimenter)

other processes (e.g. evolution, individual movements) can be ignored
because on different scales, e.g. much slower or much faster

other processes on same scale (e.g. population genetics, age structure) can
be ignored because they do not interfere somehow

same abundance dynamics could exist in systems without age, genes... e.g.
computer viruses
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Toward large systems

Idea that will keep coming back: not all details matter for
everything; sometimes, there are “barriers” that details don’t cross

if this wasn’t the case, science would be impossible

One such source of simplicity: “largeness” (high-dimensionality)
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Idea originating from physics

When a system has many variables, a much simpler description is often possible
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Meaning of randomness

dice are simple because they are extremely sensitive to many details,
making their movement chaotic
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Meaning of randomness

“barrier” against details = chaos, motion unpredictable even if you
know almost all details

result = randomness, unpredictability becomes simplicity

“Random” means “too many factors”, so complex mechanistically that it
becomes simple statistically
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Small and large systems

All that to ask: is there simplicity from apparent complexity in ecology?

Modelling an ecological community can start

from “small simplicity” (e.g. a 3-species trophic chain)

or from “large simplicity” = many-species networks...

but when & how are they simple?
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II. Many-species communities
–

Part 1: What observations are we trying to explain
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Forget about randomness for now, just study communities with many populations

Hereafter “species”, but could be intraspecific phenotypes, etc.
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Observables in large communities

What is interesting in large communities:

we lose focus on individual species – they are usually unpredictable,
maybe impacted by dozens or hundreds of others

we gain aggregate properties

static properties

dynamical properties
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Static properties

Measurable from a single/few snapshots:

Distributions (= histograms, frequencies)

abundances, number of offsprings/production, variation in space, correlations between

species’ fluctuations

Statistics on these distributions:

diversity (number of coexisting species)

total abundance
∑

i Ni , total production
∑

i riNi
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Static properties

Many common patterns are different ways of aggregating same basic data
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Fingerprints of ecological scenarios

Various patterns used as “fingerprints” to test some ecological scenarios...
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Fingerprints of ecological scenarios

... But I will insist that usually no “smoking gun”:

single pattern almost never enough to know underlying ecology and
processes

e.g. many different models can fit empirical abundance histograms
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Dynamical properties

Properties that can only be observed by tracking species over time, e.g.

Is an ecosystem in a stable equilibrium or not?

How does it respond when you disturb it?
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Dynamical properties

What is the usual state of a given ecosystem?

equilibrium
example: constant populations of bacteria feeding in different niches

directional trajectory
example: microbial succession during organic decomposition

stationary nonequilbrium
example: cycles, chaos, constant flux of species invading and dying
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Dynamical properties

How does an ecosystem respond when you disturb it?

“elastic”: goes back to its state or trajectory (unique attractor)

example: gut microbiome disturbed by sickness then re-colonized

“plastic”: remains modified, does not go back (multiple attractors)

example: humans plant trees outside their original range, they remain
in the new biome

“chaotic”: becomes more and more different

example: a single invasive species causes a cascade of extinctions and
other invasions
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Dynamical properties

Challenge: How to predict any of these dynamics for many species?
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Quick recap

Brief summary:

Various aggregate patterns & dynamics to explain

Many possible ecological scenarios & explanations, each with specific
assumptions

⇒ How do we construct a simple “generic” model that explains as many
patterns as possible?
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II. Many-species communities
–

Part 2: How do we explain observations
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Parameter explosion

If we use a model like Lotka-Volterra with S species

dNi

dt
= riNi (1−

S∑
j

aijNj) (5)

we need many parameters:

growth rates ri (S numbers, 1 per species)

r = (?, ?, ?....) (6)

interactions aij (S2 numbers, S per species)

a =

 ? ? ...
?
...

 (7)
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Species interaction networks

How do we obtain the matrix of interactions aij?

Good news: qualitative structure (aij = 0 or 6= 0) can be known for
some interaction types, e.g. who eats who
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Species interaction networks

How do we obtain the matrix of interactions aij?

Bad news: quantitative strength (aij values) is very rarely measured
directly for every pair of species i , j (few experiments doing all that)

Interaction matrix

Abundances

24 plots

24 plots

24 plots

Agrostis, Anthox, Centaur, Festuca, Holcus, Leucant, Plantag, Rumex

Grassland plants (Wageningen)

Multilinear fit
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Species interaction networks

Most of the time, theoretical assumptions are needed to put numbers
into the model:

Metabolic scaling, ri and aij given by body sizes of species i and j

Ecopath model (see with Claire this afternoon)

...

What do we do if we cannot or do not want to assume anything?
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Neutrality

(Remember Day 1 lecture by Isabelle)

Extreme simplification: neutrality, all species identical, aij = 1

Different outcomes for different species only due to chance: random
events of birth, death and migration

Why use it? Because it can suffice to predict some patterns, e.g.
abundance distributions
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Neutrality

Why go beyond neutral? It fails for other patterns, e.g.

More biomass when more species (neutral theory = zero-sum game,
total biomass is fixed)

Matthieu Barbier Random interactions 16/05/2022 32 / 48



Neutrality

Why go beyond neutral? It fails for other patterns, e.g.

Temporal fluctuations from original neutral theory are too slow
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Random interactions

Next simplest thing:

neutrality = identical interactions

a =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (8)

instead, take interactions aij that are different, but drawn at random

a =


0.29 0.54 0.53 0.02 0.40
0.57 0.86 0.90 0.81 0.76
0.53 0.11 0.42 0.44 0.09
0.15 0.72 0.84 0.27 0.94
0.87 0.85 0.61 0.36 0.63

 (9)

what we do by default in a simulation when we don’t know what numbers to put!
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Random interactions

Justification: interactions not “really” uncertain, but caused by many
independent ecological traits, mechanisms, etc.

Matthieu Barbier Random interactions 16/05/2022 35 / 48



Predictions

dNi

dt
= riNi

1−
S∑
j

aijNj

 (10)

In principle, results could depend on every detail of the matrix, e.g. how
we drew the random numbers (normal, uniform, etc.)

a =

 0.29 0.54 0.53 0.02 ...
0.57 0.86 0.90 0.81 ...
...

 (11)

In fact, under broad conditions, results only depend on 3 parameters

mean of interactions 〈aij〉
standard deviation std(aij)

and symmetry corr(aij , aji )
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Predictions

In particular, nature of interactions (competitive, trophic, parasitism...) is
irrelevant, only statistics determine resulting patterns

e.g. two models, one with predation, one with competition, give same results (abundance
distribution, etc.) if they produce the same statistics
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Predictions

How is that possible?

Like Central Limit Theorem: many independent variables together
create a Gaussian, with only 2 parameters: mean and variance

Same is true with networks: many independent interactions together
create a simple statistical result with only 3 parameters

How do we prove that result? Mathematical methods from physics
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Predictions: dynamics

NB: Chaotic phase shows “realistic” fluctuations
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Empirical test

Experimental setup: soil bacteria competition

Unique feature: ability to control overall competition strength

Fraction of
competitive

exclusion

Interaction matrix for bacteria pairs

Jiliang Hu

Jeff Gore

Hu et al. 2021 bioRxiv
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Empirical test

Random Lotka-Volterra Theory

Microbial experiments
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Random communities: a summary

Random interactions = a few input parameters, many testable outputs

Interaction network

INPUTS

THEORY

OUTPUTS
Snapshot

distributions
(abundance,

diversity, fluxes)

Dynamical
regimes

(& response to
perturbations)

Few statistics

μ

σ

S0

CHAOS

EQUILIBR.

A.S.

μ

σ

mean, variance,
symmetry of interactions Fingerprints of

high-dimensionality
in interactions,
growth rates...

+

-

But do we really believe that systems are completely random?
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III. Order and disorder
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Combining order and disorder

”There is a fundamental dichotomy between structure and randomness, which
in turn leads to a decomposition of any object into a structured (low-
complexity) component and a random (discorrelated) component.”
– Terence Tao

Claim: Often, apparently complex systems behave like interpolation between
simple order & disorder
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Example 1: competitors and mutualists
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Example 2: food webs

Simulation Theory Predictions
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(but also size hierarchy, nestedness, trade-offs...)
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Two simplicities

In brief:

Total
Order

Total
Disorder

Order
+

Disorder

Directed
structure

Group
structure

e.g. plants
& pollinators

e.g. food chains

Disorder = plausible null model for (single-functional group) communities
with many factors causing interactions

Order+disorder decomposition can reduce more complex systems to only
few more parameters, but there are different types of simple order (most
classically: blocks, nestedness, directedness)
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Take aways

Observables in large systems:

snapshot patterns: distribution and statistics
dynamics: number & nature of attractors, sensitivity to perturbations

Can we really identify ecological mechanisms from observables, or can
we explain observables without knowing much about mechanisms?

For many observables, not all details of mechanisms matter; the art of
modelling involves understanding when and which details are lost

Randomness = particular case where we can prove that all details are
lost except a few basic statistics

useful as null model; to know if network structure is important for a
result, compare to result of random networks with similar statistics

can be mixed with simple structure (e.g. functional groups,
nestedness...) to model “complex” networks
⇒ what seems complex may be largely random
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Can we really identify ecological mechanisms from observables, or can
we explain observables without knowing much about mechanisms?

For many observables, not all details of mechanisms matter; the art of
modelling involves understanding when and which details are lost

Randomness = particular case where we can prove that all details are
lost except a few basic statistics

useful as null model; to know if network structure is important for a
result, compare to result of random networks with similar statistics

can be mixed with simple structure (e.g. functional groups,
nestedness...) to model “complex” networks
⇒ what seems complex may be largely random
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