Interaction networks, food webs,
and complexity in ecology

20/03/2025
GDR TheoMoDive /[ FRB-CESAB workshop



Schedule

early morning General introduction (FM)
later Random interactions (MB)
afternoon Complexity-stability relationship (CJ)

evening Seminar “multiplexity” (SK)



Outline

1. Networks & associated definitions
2. Representations as matrices
Crash course: matrices, eigenvalues, Jacobian matrix

3. Theories & notable results
— Stability & feasibility
— Invariants
— Robustness to extinctions

4. A quick primer on network statistics
— degree distributions
— randomizations [/ null models
— modularity / block models
— nestedness



A food web example

library(cheddar)
library(igraph)
library(vegan)

library(sbm)
library(alluvial)
library(faux)

library(matlib)
library(calculus)
source('functions_network.R'")

####In FWebs, there 1is a large list of food webs called mgl
sapply(1l:length(mgl[[1]]),function(x)
dim(as. matr1x(mg1[[l]][[x]]))[l])

####Extract data from web 1,433 don't forget to change the
mat<-as.matrix(mgl[[1]1]1[[433]]) setwd line
plotMyMatrix(mat)
net.mat<-graph_from_adjacency_matrix(t(mat),mode="directed")




What is a network?

* Network or graph: nodes connected by edges

* Pairwise relationships

» Edges can be directed and/or weighted



Networks in ecology

Different types of networks,
depending on what an edge
means
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* Spatial networks

i B edge = spatial connection

* Assembly network
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Ecological interaction networks

» Different types of interactions => different
networks

— mutualistic (e.g. plant-pollinator)

— antagonistic (e.g. food web)

* Data on networks
— interaction frequency (field)
— co-abundances/occurrences s
— interaction potential (expe) . K ‘

Pocock et al. 2012 Science



A little history
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FIG. 1. The feeding relationships by numbers and calories of the Pisaster domi-
nated subweb ar Mukkaw Bay. Pisaster, N = 1049; Thais, N=287. N is the num-
ber of food items observed eaten by the predators. The specific composition of
each predator’s diet is given as 2 pair of fractions; numbers on the lefe, calories on

Paine 1966 Am Nat
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1. The boll weevil complex. (From Pierce, Cushman, and Hood, U. S. Department of
Agriculture, Bur. Eotom. Bull, 100.)

Allee et al. 1949 Principles of Animal Ecology

INTERRELATIONS OF FOOD CHAINS

Biological communities do not consist of independent food chains, but of
food webs, of such a kind that an individual at any level (corresponding to a
link in a single chain) can use some but not all of the food provided by spe-

cies in the levels below it.

Hutchinson 1959 Am Nat



Types of network

1. Unipartite networks

= “messy” ones

Interactions can occur between

any two species
e.g. food webs, competition network

net<-sample_gnp(100,0.2,directed = FALSE)
plot(net)
net<-sample_gnp(100,0.2, directed =TRUE)
plot(net)

plot(net.mat, layout=layout_with_mds)

plot(net.mat, layout=layout_as_tree)
plot(net.mat, layout=layout_as_food_web5) Yodzis 1998 ] Anim Ecol




Types of network

2. Multipartite networks

= neat ones

Each species has a “role”

= belongs to a level

No interaction within a level

net<-
sample_bipartite(50,50,"gnp",0.1)
plot(net, layout=1layout_as_bipartite) Pocock et al. 2012 Science



Representations of networks

A network = a matrix

network adjacency matrix
c out of
NI N2 N3 N4
A NLoo Lo
(2) 3 a -
to
N3 0 1 0 0
(4) Ne 0 1 0 0

net<-sample_grg(100, 0.2)
as_adjacency_matrix(net)



Representations of networks

A network = a matrix

weighted network weighted adjacency matrix

out of
N1 N2 N3 N4

5 2 0
0 0 2
10 O 0
5 0 0

N1

a
N3
N4

E(net)Sweight<-rpois(length(E(net)),2)
net[,]

o O wuvi O



Network matrices

* Undirected network => symmetric matrix

* Directed network => non necessarily symmetric
matrix

Potential misunderstanding over “food web matrices”?

who eats whom? energy fluxes
0 1 0 0 1
0 0 1 1 0

0 0 0 1 1




Network matrices

Undirected network => symmetric matrix

Directed network => non necessarily symmetric
matrix

Potential misunderstanding over “food web matrices”?

Binary or real-valued matrix

Adjacency matrix vs. incidence matrices in
multipartite networks
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Matrices for multipartite networks




Matrices for multipartite networks

adjacency matrix

N w N [ O @) (ws] >

net<-sample_bipartite(4,4,"gnm" ,m=8)
net[, ]



Matrices for multipartite networks

adjacency matrix

A

incidence matrix B
A B C D C

1 1 0 0 0 D
2 1 0 0 1 1
31 1 1 0 2
4 0o 1 o0 1 3

as_biadjacency_matrix(net)



Degrees

For binary adjacency matrices A (=1 if there is an
edge, 0 otherwise), one can compute:

* node i degree = total number of connections in an
undirected network 4 _
d, =) a;
J

degree(net)

* node i in-degree and out-degree = number of
connections coming in or going out of node i

d- = Zai‘ d* = Za‘i
J J

degree(net,mode=“1in”) degree(net,mode=“out”)



Connectance and degree distribution

Connectance = nb of realized interactions/nb of potential interactions

####Compute the connectance of the empirical network
Compute the connectance of net.mat

####Plot i1ts degree distribution

Make a histogram of the degrees of net.mat

Plot the cumulative distribution of the degrees of net.mat




Connectance and degree distribution

Connectance = nb of realized interactions/nb of potential interactions

####Compute the connectance of the empirical network
conn<-mean(as.matrix(net.mat[,]))

####Plot 1ts degree distribution
hist(degree(net.mat) ,breaks=0:max(degree(net.mat)))
plot(degree_distribution(net.mat, cumulative = TRUE))




Crash course: matrices

Matrices = mathematical objects as 2-way tables

“Strange” multiplication with vectors (and matrices)
a b C X ax+by+cz
d e f 1] vy = dx+ey+fz
g h | Z gx+hy+iz

m<-matrix(rbinom(9,1,0.5),nrow=3)
x<-rnorm(3)

m* X

m2%6* %X



Crash course: matrix eigenvalues

Spectrum of matrix M = list of values A such that
there is a non-zero vector x verifying

A’s are called eigenvalues, x’s eigenvectors

Sp(M) is always finite (= discrete set of numbers), at
most the smallest dimension of the matrix

eigen(m)



Crash course: Jacobian matrices

A set of ODEs written as

dX =
F
&~ F (%)

with an equilibrium at X

can be linearized around this equilibrium:
d(X-X"

<3 ) (2-%)




Crash course: Jacobian matrices

Matrix J(X") is called the Jacobian matrix of the

— %

dynamical system at equilibrium X

J(X")=(0F /ox,)

X=X

Local stability at X is obtained when all eigenvalues
of J(X") have negative real parts

jacobian(c("rxnlx(1-nl/k)-a*nl*n2/(1+hxnl)","b*nl*n2/(1+h*nl)-
dxn2"), var = c("nl", "n2"))



| otka-Volterra and networks

The classic (dimensionless) LV system

dx. ]
. +Zaijxj
dt =%

can be seen as a network, with matrix A as its
“weighted” adjacency matrix



May'’s stability result

Assume species abundances follow a large system
of ODEs (= many species, S) and have an
equilibrium X

If the Jacobian matrix at this equilibrium is random,
with non-diagonal elements equal to 0 with
probability 1 — c and otherwise equal to the drawing
of a normal distribution of mean =0 and variance
0%, the system is stable when:

oS <3

May 1972 Nature



May'’s stability result
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May'’s stability result

Interpretation:

Stable systems should have low diversity (S) and/or
low connectance (c) and/or low variability of non-
diagonal Jacobian elements (o) and/or highly
negative diagonal Jacobian elements

Intuitively, does not seem to conform to reality

= some of the assumptions must be false
— transient dynamics (not at equilibrium)?

— structure of interactions not random?



Feasibility vs. stability

One strong argument against May’s result:

It might be harder to get an equilibrium (with all
the species) than to get stability

For a certain class of LV systems (Bizeul-Najim),
feasibility of equilibrium is obtained only when

o/2S log(S) < -J;

Bizeul & Najim 2021 Proc Am Math Soc



Feasibility vs. stability

a 400 b 1§eesgg- '
80 | 0.8 | _P@)
_ \
m |
% 60 r = 06 ||
Z :
2 407 = 04
o
L n=8
201 0.2 n=100 | %
"-\ﬂ:ED‘_h_ n=14
0 ' 0 L A= SIS - —
0 0.5 0 0.5 1 1.5

Results obtained from simulations of random LV
systems

Stone 2016 Nat Comm



Food web invariants

Two models from the 80-90’s:

1. the cascade model (Cohen-Briand): predators
eat species that are smaller than them with
probability ¢/S

— connectance decreases as 1/S

m<-cascade_matrix(10,20)
sum(m) / (dim(m) [1]*(dim(m)[1]-1))

m<-cascade_matrix(10,200)
sum(m) /(dim(m) [1]*(dim(m)[1]-1))



Food web invariants

Two models from the 80-90’s:

2. the niche model (Williams-Martinez): predators
eat all species that are within a size interval

—> connectance stays constant



Food web invariants

Two models from the 80-90’s:

2. the niche model (Williams-Martinez): predators
eat all species that are within a size interval

—> connectance stays constant

niche<-niche_matrix(0.2,100)
m<-nicheSmatrix
sum(m) / (dim(m) [1]72)

niche<-niche_matrix(0.2,200)
m<-nicheSmatrix
sum(m) / (dim(m) [1]72)



Generating the niche model

In the functions_network.R file, there is a function niche_matrix to
generate niche model-based food webs

####Generate 100 virtual food webs based on the niche
model with the actual connectance

Create 100 instances of niche_matrix with Lapply
Create a list of the 100 matrices corresponding to the simulated food webs




Generating the niche model

In the functions_network.R file, there is a function niche_matrix to
generate niche model-based food webs

####Generate 100 virtual food webs based on the niche
model with the actual connectance

niches<-lapply(1:100, function(x)
niche_matrix(conn,dim(mat)[1]))

ms<-lapply (1:100, function(x) niches[[x]]S$matrix)




Robustness to secondary extinctions

General idea: if one species is removed, what
happens to the remaining ones?

Under certain rules, secondary extinction

Robustness analysis = how many species are lost
when R species are removed?



Cumulative secondary extinctions / S
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Dunne et al. 2002 Ecology Letters

Examples based on a variety

of datasets

Secondary extinction when a

species loses all its prey
items (except itself if

cannibalistic)
Different scenarios based on

how removed species are
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Robustness to secondary extinctions

net<— Examples based on a variety
graph_from_adjacency_matrix(m,mode of datasets

="directed") . ,

i index <- seq(from = 0, to = 1, Secondary extinction when a
by =0.1) species loses all its prey
i_index <- head(i_index,-1) items (except itself if
prob_exp<-exponent.removal (net, , oo

i_dndex) cannibalistic)

V(net)Sname<-1:200 Different scenarios based on

iterate(fw_to_attack=net, h d .
prob_exp, alphal=50, 1iter=10, ow removed species are

i_dndex, plot = TRUE) chosen

0.50
040

030 |

5
0.20 | [ () Most connected (r? = 0.76)

& Most connected, (r?=0.91)
no basal deletions

<4+ Random (r?=0.64)
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A quick primer on network stats

Degree distributions
Null models (randomizations) of networks
Modularity and block models

Nestedness



Degree distributions

1. Can be computed

empirically (easily) e NE TNE
2. Networks can be e |
generated from degree oo \
sequence (harder) IR R R
3. Can be compared to R I b
benchmark distributions N
(power law, Poisson, el BRI

Erd6s-Rényi...) p—

Dunne et al. 2002 PNAS



Degree distributions

net<-
1. Can be Computed graph_from_adjacency_matrix(
. : m)
empirically (easily) hist(degree(net),breaks=0:ma
x (degree(net)))
2. Networks can be plot (degree_distribution(net
, cumulative = TRUE))
generated from degree
net<-
Sequence (harder) sample_degseq(degree(net) ,me
thod = "v1")

3. Can be compared to

. . . mean (degree(net))
benchmark distributions e et e e o) nobinom®

(pgwer |aW, Poisson, , Length(V(net)) ,mean(degree(
Erdﬁs RénY| ) net))/length(V(net)))



Degree distributions

Usefulness of power laws in ecology?

few nodes in ecology => impossible to ascertain?

SIAM REVIEW @ 2009 Society for Industrial and Applied Mathematics
Val. 51, No. 4, pp. 661-703

Power-Law Distributions in
Empirical Data™

Aaron Clauset!
Cosma Rohilla Shalizi
M. E. J. Newman?

MATHEMATICS

Most reported power laws lack statistical

criti ca I Tr uth s Ab 0 ut Powe r Laws support and mechanistic backing.

Michael P. H. Stumpf' and Mason A. Porter?



Degree distributions

Allometric scaling—®

@—Zipf's Law

Statistical support

]

&
£y o g .
@ S. cerevisiae protein interaction network

T &b

C. elegans nervous system

Y

Mechanistic sophistication

How good is your power law? The chart reflects
the level of statistical support—as measured in (16,
21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models
for various reported power laws. Some relation-
ships are identified by name; the others reflect the
general characteristics of a wide range of reported
power laws. Allometric scaling stands out from the
other power laws reported for complex systems.

As a rule of thumb, a candidate power
law should exhibit an approximately linear
relationship on a log-log plot over at least
two orders of magnitude in both the x and y
axes. This criterion rules out many data sets,
including just about all biological networks.

Stumpf & Porter 2012 Science



Null models [ randomizations

Statistics on networks are hard to test because...
everything is dependent on everything else

Two possibilities for statistical tests:

— define a probabilistic model to build H,

— define a null model based on a randomization of data



Null models [ randomizations

Configuration model: null model corresponding to
randomization of edges with fixed degrees

wY v b

random attachment
try again if self-link or double link




Null models [ randomizations

Algorithm for bipartite binary matrices

ARTICLE

Received 27 Dec 2013 | Accepted 14 May 2014 | Published 11 Jun 2014

A fast and unbiased procedure to randomize
ecological binary matrices with fixed row and
column totals

Giovanni Strona', Domenico Nappo', Francesco Boccacci!, Simone Fattorini¢ & Jesus San-Miguel-Ayanz'

net<-sample_bipartite(50,50,"gnp",0.1)

sample.bip.config<-
simulate(nullmodel(as_incidence_matrix(net),"curveball"),nsim=
1000)

dim(sample.bip.config)



Null models [ randomizations

For unipartite networks, slightly harder task

n<-1000

net<-sample_gnp(n,0.2, directed = FALSE)
sample.config.undirected<-lapply(1:100,function(x)
sample_degseq(degree(net), method = "vl1"))
length(sample.config.undirected)

For directed networks, even worse (no control over uniformity)

net<-sample_gnp(n,0.2, directed = TRUE)
sample.config.directed<-lapply(1:100, function(x)
sample_degseq(degree(net,mode="out"), degree(net,mode="1in"),
method = "simple.no.multiple"))
length(sample.config.directed)

Null models for weighted networks are even more difficult to

define...



Network structure

Ecological interaction networks might have non-
random structure

OZ=rr AR T ITooTmmMmOoOoOm>E

modular

1 2 3 45 6 7 8 9510 11 1213 1415

nested

1 2 3 45 67 8 910 11 1213 1415

OZE=ErrA««"I6OmTmmoomr

Lewinsohn et al. 2006 Oikos



Modularity

Modularit 1 did;
' oiTa-
I, ]

where 6, equals 1 if nodes i and j belong to the same
module

Principle : compare a; to its expectation given the degrees
d, taking only edges within modules (= groups)

Modules = groups that maximize the value of Q

Newman 2006 PNAS



Modularity

Works for undirected networks

Several algorithms (edge-betweenness, leading
eigenvector, fast greedy, multilevel/louvain...)

net<-sample_gnp(100,0.2, directed = FALSE)
EB.mod<-cluster_edge_betweenness(net)
LE.mod<-cluster_leading_eigen(net)
ML.mod<-cluster_louvain(net)

plot(EB.mod,net, layout = layout_with_mds)
plot(LE.mod,net, layout = layout_with_mds)
plot(ML.mod,net, layout = layout_with_mds)



Modularity

Works for undirected networks

Several algorithms (edge-betweenness, leading
eigenvector, fast greedy, multilevel/louvain...)

Not adapted to directed networks:
— make the network symmetric or

— use another definition of modularity for directed
networks



Modularity of the empirical FW

####Is the empirical FW less modular (or more modular)
than the niche model food webs?

Compute the modularity score (using Louvain) of the 100 matrices created with the niche
model (noted ms) as a list (with Lapply)

Plot their density

Compute the p-value (*higher tail”) using this collection of simulated modularities and the
ecdf function




Modularity of the empirical FW

####Is the empirical FW less modular (or more modular)
than the niche model food webs?

moduls<-lapply(1:100, function(x)
cluster_louvain(graph_from_adjacency_matrix(ms[[x]],mo
de="undirected"))Smodularity[2])

plot(density(moduls)) sty modute
modul.ecdf<-ecdf (moduls)
1-modul.ecdf(modul$Smodularity[2])

J 7 ~ ~—

0.45 0.50 0.55 0.80 0.65

N =100 Bandwidth =0.01258




Modularity of the empirical FW

####Is the empirical FW less modular (or more modular)
than the niche model food webs?

p.val(modulSmodularity[2],moduls,"larger","Null
modularity distribution")

Null modularity distribution




Which algorithm?

Unipartite networks Bipartite networks

(c) Birnary netwerks
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Block models

Idea: find blocks of nodes that “behave” similarly

Farms

Crops

Figure 6 Incidence matrix generated according to a LBM with three blocks of crops, two
blocks of farms and 7= (0.5 0.1 0.6 0.5 0.6 0.1). (A) Observed incidence matrix
and (B) same incidence matrix re-organized and clustered in homogeneous blocks
obtained by LBM inference.

Thomas et al. 2015 Adv Ecol Res



Block models

Idea: find blocks of nodes that “behave” similarly

Different distributions for elements (Bernoulli,
Poisson, ...)

nfer one parameter by block + group proportions

sbmnet <- sampleSimpleSBM(100, c(.5, .25, .25), list(mean =
diag(.4, 3) + 0.05), model = 'bernoulli')
sbmnet$SnetworkData

net.SBM <- estimateSimpleSBM(as.matrix(sbmnet$SnetworkData))
plot(net.SBM, 'expected')

plot(net.SBM, 'data')



Modularity and blocks

Components of a network = species sets that can be linked by a series of edges
count.components(), components(), largest_component()

####is the empirical food web structured by modules or blocks?
Find blocks for mat

Find modules for mat using the Louvain algorithm

Compare the two classifications using the function make_alluvial_2

###t#tare blocks/modules related to trophic levels?
Count the components of net.mat

Determine the trophic levels of net.mat

Plot the network net.mat using the layout Layout_as_food_web

Plot the relationships between trophic levels, block memberships and module
memberships




Modularity and blocks

Components of a network = species sets that can be linked by a series of edges
count.components(), components(), largest_component()

####is the empirical food web structured by modules or blocks?
m.SBM <- estimateSimpleSBM(mat)

modul<-
cluster_louvain(graph_from_adjacency_matrix(mat,mode="undirected"))

make_alluvial_2(m.SBM$Smemberships,modul$membership,"Blocks","Modules")

###t#tare blocks/modules related to trophic levels?
count_components(net.mat)

net.comp<-components(net.mat)
tl.1<-trophic_levels(largest_component(net.mat))
plot(largest_component(net.mat),layout = layout_as_food_web)

plot(tl.1l~as.factor (m.SBMS$indMemberships[which(net.comp$membership==
, 1%%%(1:3)) ,xLlab="SBM group",ylab="Trophic level")

plot(tl.l~as.factor (modul$membership[which(net.comp$membership==1)]),x
lab="module",ylab="Trophic level")




Modularity and blocks
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Spectral clustering

Idea: the Laplacian matrix of the graph, given by

L=D-A

where D is the diagonal matrix with node degrees and
A is the adjacency matrix,

is able to find components of the graph (= parts that
are disconnected from one another) as the eigenvectors
of eigenvalue 0

Heuristics: the eigenvectors associated with the low
eigenvalues of L characterize the membership of nodes
to “clusters” (through K-means algo)



Spectral clustering

SC<-
spectral_clustering(graph_from_adjacency_matrix(sbmnet
SnetworkData),3)

plotMyMatrix (sbmnet$networkData,clustering=list("row"=SC
,"col"=SC))




Spectral clustering

laplacian_spectral_gap(graph_from_adjacency_matrix(sbmne
tSnetworkData))

optims<-sapply(4:10,function(n)
laplacian_spectral_gap(graph_from_adjacency_matrix(sam
pleSimpleSBM(100, rep(1/n, n), list(mean = diag(.4, n)
+ 0.05), model = 'bernoulli')S$networkData))S$optim_n)

par (mfrow=c(1,1))

plot(4:10,optims)




Nestedness

* ldea: measure the tendency for specialists to only
interact with a subsample of interactors of
generalists

o Several iNdices  rueersime e

ean/rela
Overlap
richness diff. Overlap
‘ Ties count
N PRN positively
Mean
Simp!
Ties count
PRSN NODF . NODF negatively
7 \ )
Order-invariant Order-dependent

Figure 4. A tree-like summary of conceptual and technical issues to be considered when selecting pairwise measures of nestedness.

Podani & Schmera 2012 Ecography



Nestedness

* Not necessarily a fruitful concept because...
— theoretically questioned (James et al. 2012 = connectance)
— choosing the good index is hard (Podani & Schmera 2012)
— different indices give different results (Thomas et al. 2015)

— for power law degree distribution, nestedness is

completely determined by the exponent (Astegiano et al.
2015)

— nestedness of common datasets is natural when sampling
from the right matrix ensemble (Payrato-Borras et al.

2019)



| ast words

Ecological interaction networks can be used to
study community/ecosystem properties

Random network models can help gauge
generalities (invariants) and specificities

All network patterns do not have a mechanistic
model-based explanation (yet), but some do

Interaction networks data of different types
(interaction occurrences vs. interaction strengths)
lend themselves to different analyses
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