Complexity and stability of empirical food webs

Food webs

Complex systems

Will the ecosystem buffer or amplify a perturbation ?

A simplified food web for the Northwest Atlantic. © IMMA

The complexity stability debate

Until the 70's: Diversity stabilizes ecosystems (Odum 1953, MacArthur 1955)

Guyane, tropical forest.

Alaska, boreal forest.

The complexity stability debate

Complexity decreases ecosystem stability (May 1972)

Complexity:

- Species richness S
- Connectance C
- Variance of interaction strengths σ^2

Professor Lord Robert May

Stability criterion: $\sigma\sqrt{SC} < 1$

The complexity stability debate

Complexity decreases ecosystem stability (May 1972)

Complexity:

- Species richness S
- Connectance C
- Variance of interaction strengths σ^2

Professor Lord Robert May

Stability criterion: $\sigma\sqrt{SC} < 1$

Where does this result come from?

Local stability analysis

Asymptotic stability: rate to which species populations go back to their initial densities after a pulse disturbance

Largest eigenvalue of the community matrix (its real part)

Link the stability of a matrix to its properties

 \overline{d} : mean of diagonal terms of C

In random communities: $R = \sigma \sqrt{SC}$ σ^2 : variance of non-diagonal terms c_{ij} S : size of the matrix C : proportion of non-zero terms

Link the stability of a matrix to its properties

 \overline{d} : mean of diagonal terms of C (magnitude of density dependence)

In ecological communities : $R = \sigma \sqrt{SC}$ σ^2 : variance of interaction strengths S: species richness C: connectance Let's check this result in R

« In short, there is no confortable theorem assuring that increasing diversity and complexity beget community stability; rather, as a mathematical generality the opposite is true.

The task, therefore, is to elucidate the devious strategies which make for stability in enduring natural systems. » (May 2001).

1. What is the actual complexity-stability relationship in empirical communities?

1. What is the actual complexity-stability relationship in empirical communities?

2. What are the « *devious strategies* » of real communities that allow them to persist despite their complexity?

Food-web dataset

116 quantitative food webs from Ecopath models (Christensen 1992)

For each species *i*:

- biomass *B_i* (tons/km²)
- production (P/B); (year¹)
- consumption (Q/B); (year¹)
- diet composition *DC*_{ji}

Assumption: food webs are at equilibrium

Derivation of interaction strengths from data

What we want:

 α_{rc} : negative effect of consumer c on resource r

 α_{cr} : positive effect of resource *r* on consumer *c*

Derivation of interaction strengths from data

What we want:

 α_{rc} : negative effect of consumer c on resource r α_{cr} : positive effect of resource r on consumer c

What is measured:

- biomass B_i (tons/km²)
- production (*P*/*B*); (year¹)
- consumption $(Q/B)_i$ (year¹)
- diet composition *DC*_{ji}

From De Ruiter et al. (1995):

$$\alpha_{rc} = - (DC_{cr} \times (Q/B)_c) / B_r$$

$$\alpha_{cr} = (DC_{cr} \times (P/B)_c) / B_r$$

Derivation of interaction strengths from data

What we want:

 α_{rc} : negative effect of consumer c on resource r α_{cr} : positive effect of resource r on consumer c

What is measured:

- biomass B_i (tons/km²)
- production (*P*/*B*); (year¹)
- consumption $(Q/B)_i$ (year¹)
- diet composition *DC*_{ji}

From De Ruiter et al. (1995):

$$\alpha_{rc} = - (DC_{cr} \times (Q/B)_c) / B_r$$

$$\alpha_{cr} = (DC_{cr} \times (P/B)_{c}) / B_{r}$$

 $\alpha_{cr} = \alpha_{rc} \times e_{rc}, \text{with } e_{rc} = (P/B)_c / (Q/B)_c$ $\rightarrow \alpha_{cr} \le \alpha_{rc}$

Practice in R

- 1. computing food-web complexity and stability
- 2. analysing the relationship between complexity and stability in empirical food webs
- 3. comparing the complexity-stability relationship of empirical and « randomized » food webs

What are the non-random properties of food webs?

$$M = \begin{pmatrix} -d_1 & +\mathbf{c}_{2,1} & +\mathbf{c}_{3,1} & 0 \\ -\mathbf{c}_{1,2} & -d_2 & 0 & +\mathbf{c}_{4,2} \\ -\mathbf{c}_{1,3} & 0 & -d_3 & +\mathbf{c}_{4,3} \\ 0 & -\mathbf{c}_{2,4} & -\mathbf{c}_{3,4} & -d_4 \end{pmatrix}$$

- H₁: food web topology (who eat whom) $\frac{1}{1}$
- H_{3:} interaction strength distribution

