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This paper deals with nestedness measures that are based on pairwise comparisons of sites, evaluates their performance and 
suggests improvements and generalizations. There are several conceptual and technical criteria to judge their ecological 
applicability. It is of primary concern whether the measures 1) have a clear mathematical definition, 2) are influenced by  
the ordering of the data matrix, 3) incorporate similarity alone or similarity together with a dissimilarity component,  
4) consider site pairs with identical species number negatively or positively, 5) show sensitivity to small changes in the 
data, and 6) are not vulnerable to type I and type II error rates. We performed a detailed comparison of the nestedness 
metric based on overlap and decreasing fill (NODF), the percentage relativized nestedness and the percentage relativized  
strict nestedness functions (PRN and PRSN, respectively), based on analytical results as well as on artificial and actual exam-
ples. We show that NODF is in fact the average Simpson similarity of sites with different species totals, and that its value 
depends on how the matrix is actually ordered. NODF is modified to always produce the maximum possible result (NODF-
max), independently of the order of columns and rows. Being based on similarities, NODF and NODFmax overemphasize the 
overlap component of nestedness and underrate richness difference which is also an important constituent of nested pattern 
in meta-community data. This latter feature is reflected adequately by PRN and PRSN. However, PRSN is similar to NODF 
and NODFmax in sharing the disadvantages that 1) complete agreement and segregation in species composition are not dis-
tinguished, 2) a random matrix can have a higher value than truly nested patterns, and 3) they are ill-conditioned statistically. 
These problems are rooted mostly in that site pairs with tied totals affect the result negatively. We emphasize that PRN is free 
from these difficulties. PRN, PRSN, and NODFmax, together with mean Simpson similarity exhibit highly similar statistical 
performance: they are resistant to type I and type II errors for the less constrained null models, although there are subtle dif-
ferences depending on matrix fill and algorithm of randomization. The most constrained null model, with all marginal totals 
fixed, makes all statistics more sensitive to type I errors, although vulnerability depends greatly on matrix fill.

Nestedness is a useful concept in meta-community analysis 
(Wright et al. 1998, Greve and Shown 2006, Hausdorf and 
Hennig 2007, Ulrich et al. 2009, Presley et al. 2010) and in 
studies of bipartite networks (Bascompte et al. 2003, Araujo 
et al. 2010) to find ecological explanation of structure in 
presence-absence data. Early methods for the quantifica-
tion of nestedness produced a single number reflecting some 
global property of the data matrix (for example, the nested-
ness temperature, nestedness discrepancy, and the Nc coef-
ficient; Patterson and Atmar 1986, Brualdi and Sanderson 
1999, Wright and Reeves 1992, respectively). The Nc index 
was the first one that operated via pairwise comparisons, 
being equal to the ‘sum of the number of species shared over 
all pairs of sites’ (Wright et al. 1998). To remove matrix-size 
dependence which characterizes all these methods, Almeida-
Neto et al. (2008) proposed a new measure, called the ‘nest-
edness metric based on overlap and decreasing fill’ (NODF). 
In this, pairwise comparisons were relativized using row or 
column totals and nestedness was expressed as the mean 
of overlap values calculated for all pairs of sites, species, or 

both. Recently, NODF has become one of the most fre-
quently used measures of nestedness ( 3500 hits by Google 
at ‘NODF  nestedness’ and 66 citations to Almeida-Neto 
et al. 2008, in the Web of Science, September 2011). With 
a different motivation in mind (to simultaneously represent 
data structure in terms of similarity, beta diversity, nested-
ness and other ecological phenomena through the simplex 
method), we proposed two other, closely related formulae 
for measuring nestedness (Podani and Schmera 2011). In 
that framework, we used the ‘percentage relativized nested-
ness’ (henceforth abbreviated as PRN) and the ‘percentage 
relativized strict nestedness’ (PRSN) functions to quantify 
the relative contribution of nestedness to data structure, also 
in terms of average pairwise measures. The main novelty was 
that, in addition to overlap, the PRN and PRSN functions 
also consider a fraction of dissimilarity (namely, richness 
difference) as contributor to nestedness pattern in presence-
absence data. Thus, there are at least three coefficients of  
measuring nestedness by means of relativized pairwise  
coefficients, but the extent to which they agree or differ 
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is not yet known. A comparative evaluation is thus neces-
sary to reveal their relative merits in view of the conceptual 
background they are representing. First, we provide a short 
mathematical description of NODF and propose an order-
independent variant of it (NODFmax). Then, the perfor-
mance of these functions is compared with that of PRN and 
PRSN, based on artificial examples as well as by analytical 
and statistical evaluation. Our study is completed by actual 
examples taken from different areas of community ecology. 
The results allow us to draw conclusions on general features  
of nestedness coefficients, thus facilitating choice among the 
increased number of options currently available for ecologists.

Measures

Reformulation of NODF

The NODF measure can be applied to columns (sites) or 
rows (species) of the data matrix, or both. However, to sim-
plify discussion without losing generality, in this paper we 
shall deal only with columnwise analyses of nestedness, i.e. 
with comparisons of sites. NODF is introduced by Almeida-
Neto et al. (2008, p. 1229) using column totals, variables 
indicating whether column totals decrease from left to right, 
percentage overlap and the degree of paired nestedness to 
devise the final formula. Full description is not reproduced 
here; while it is shown below that there is a compact and 
explicit formula for its calculation.

To facilitate easy comparison, we use the same subscripts 
as Almeida-Neto et al. (2008) and to clarify the mathematics 
behind NODF, we rely upon the standard system of abbre-
viations of the 2  2 contingency table generally used for 
defining pairwise resemblance coefficients in numerical ecol-
ogy. For a given pair kl of sites, akl is the number of species 
occurring in both sites, bkl is the number of species present 
only in site k, and ckl is the number of species appearing in 
site l only. Using these symbols, NODF can be written for  
n sites in a concise form as
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In words, NODF is 100 times the sum of paired overlap values 
(Okl) for which species totals are lower for the second site than 
for the first, divided by the number of all possible site pairs.

The PRN approach

As mentioned in the Introduction, an alternative view is that 
both similarity (overlap) and dissimilarity (more precisely,  
its richness difference component) should influence with 
equal weight the measurement of nestedness. The following 
function satisfies this requirement:
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(mean relativized nestedness, Podani and Schmera 2011). 
This is based on the decomposition of the total number of 
species for a given pair of sites (m  a  b  c) into three 
terms, a, |b2c| and 2min(b, c). While the first two (overlap 
and richness difference) contribute to nestedness positively, 
the third reflects a property that is antithetic to nestedness 
(Baselga 2010), namely, species replacement. The rationale  
in making this contrast is that the higher the number of 
species in site k that are replaced by the same number of 
species in l, the larger part of m contradicts nestedness. 
Relativization is achieved by division with m and the mean 
value is obtained for all possible pairs of sites. Then, for easy 
comparison with NODF, N–rel is multiplied by 100 to obtain 
the percentage relativized nestedness (PRN).

If nestedness is understood to exist for unequally rich 
sites only, then the condition of positive support is further 
restricted via the mean relativized strict nestedness function 
given by:
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Its value multiplied by 100 gives the percentage relativized 
strict nestedness (PRSN).

Some basic features of pairwise measures

Dependence on the order of sites

The original description of NODF (see p. 1230 in Almeida-
Neto et al. 2008) as well as Eq. 1 implicitly suggest depen-
dence on the ordering of the columns. Consequently, 
example matrices A and B given below have drastically  
different NODF values (100: maximum nestedness vs 0:  
no nestedness, respectively),

A B 
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(Ex. 1)

although they represent the same artificial meta-community. 
This order-dependence of a nestedness measure might 
reflect a clear ecological concept (in this case nestedness is 
interpreted as a gradient analysis, see examples and further 
references in Lomolino 1996), or might be an undesirable 
property of the measure (in case of bipartite networks, for 
instance). To remove the dependence of NODF on the order 
of sites, Eq. 1 can be modified in the following manner:
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That is, NODFmax is 100 times the sum of paired overlap 
values for which the column totals differ (Sc) divided by 
the number of all possible pairs. The original definition (as 
reformulated in Eq. 1) gives results identical to those pro-
duced by Eq. 4 only if column totals decrease monotonically 
from left to right. It is easy to see that for any other ordering 
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the original NODF measure gives lower values, while for-
mula (4) produces unique and maximum value irrespective 
of how the columns (and rows) of the matrix are presented 
(order invariance), hence its subscript. In Eq. (4), order-
ing is ensured implicitly by the min(b, c) operation in the 
denominator, which makes pre-ordering unnecessary. Thus, 
‘DF’ in the name of the coefficient seems to reflect ‘different 
fill’ rather than ‘decreasing fill’. Examination of Eq. 2 and 3 
shows immediately that PRN and PRSN are also insensitive 
to the order of columns, because Nrel and Nrel ¢ are sym-
metric for b and c.

Similarity vs dissimilarity in quantifying nestedness

Actually, the paired overlap index embedded in Eq. 1 and 
4 has long been known in ecology as Simpson similarity 
[S  a/(a  min(b, c)), Simpson 1943, see also Koleff et al. 
2003]. Therefore, 1) NODF is 100 times the mean Simpson 
similarity of site pairs if column totals decrease strictly  
monotonically from left to right in the matrix, and 2) 
NODFmax is 100 times the mean Simpson similarity of site 
pairs if they have unequal column totals. That is, nestedness 
is inherently equated by similarity. This contradicts the sug-
gestion that beta diversity (i.e. overall dissimilarity) partly 
reflects nestedness, because these two share a common com-
ponent (Harrison et al. 1992, Baselga 2010, Schmera and 
Podani 2011). In contrast to NODF and NODFmax, PRN 
and PRSN (Eq. 2–3) express nestedness in terms of similarity 
and dissimilarity (richness difference) as well. Consequently, 
as suggested earlier (Podani and Schmera 2011), richness 
difference (|b 2 c|) may be the joint fraction of beta diver-
sity and nestedness (if a  0 for PRN and if a  0 and b  c 
for PRSN). If one wishes to judge the relative importance 
of overlap and richness difference influencing the values of 
PRN and PRSN, the percentages can be decomposed into 
parts coming from these two sources, allowing a detailed 
interpretation of results (Podani and Schmera 2011) which 
is not feasible via the NODF and NODFmax approaches.

We demonstrate by examples that whenever the nested-
ness element of beta diversity is meant, it is understood that 
nestedness has components other than similarity or overlap. 
Consider the following two pairs of sites

k l k l
0 1
1 1
1 1
1 0
1 0
1 0
1 0

0 1
1 1
1 1
1 0
1 0
0 0
0 0 	

(Ex. 2)

Both pairs contribute equally (O  Sc  0.66) to the sum 
in Eq. 1 and 4. As a consequence, NODF and NODFmax 
neglect the fact that in the first pair a larger subset of species 
exhibits nested pattern than in the second, so that in this 
sense the nestedness value should be larger for the first pair. 
This difference is caused by species that make the first site 
pair more dissimilar than the second, so that, as said above, 
there is a beta diversity component in nestedness which is 
ignored by NODF and NODFmax. In contrast, PRN and 
PRSN do make distinction between these two pairs of sites 

with the desired result, because Nrel  Nrel ¢  0.71 for the 
first pair, whereas Nrel  Nrel ¢  0.6 for the second.

The treatment of ties and the concept of  
perfect nestedness

Although nestedness is often regarded as a straightforward 
concept, its measurement may follow two distinct lines 
for site pairs that have identical species totals (‘tied sites’). 
For three pairwise measures (Eq. 1, 3 and 4), the means 
are calculated such that site pairs which do not satisfy the 
given condition (b  c or b  c) contribute by zero to the 
numerator, while they are still counted in the denominator. 
Consequently, site pairs with tied column totals are negative 
contributors to the nestedness value. This implies the under-
standing that the pairwise nestedness relationship is restricted 
to a ‘poorer’ site and a ‘richer’ one: ‘in a nested pattern the 
species composition of small assemblages is a nested subset 
of the species composition of large assemblages’ (Almeida-
Neto et al. 2008, Ulrich et al. 2009). This is not so with 
Eq. 2 in which tied site pairs contribute positively to the 
numerator, and therefore to the final mean value. Similarly 
to PRN, the mean Simpson similarity (S–, no equation given) 
also considers tied site pairs positively. Conceptually, these 
functions view the nestedness relationship symmetrically  
for tied site pairs. This is consistent with the definition of  
the Wright and Reeves (1992) Nc measure, which counts ‘the 
number of times a species’ presence at a site correctly pre-
dicts its presence at equally rich or richer sites’ (Wright et al. 
1998). (Note that N ac klk l



∑ .) For analyzing bipartite 

networks, Araujo et al. (2010) suggested a measure of nested-
ness in which tied pairs are also counted positively (see their 
Fig. 4). Those authors commented that the ‘nestedness of a 
matrix is a measure of how much its elements can be packed 
without holes’ – suggesting agreement with the symmetrical 
approaches. Also, it is obvious from Definition 1 in Mannila 
and Terzi (2007) that those authors consider tied site pairs as 
contributors to full nestedness.

The issue of how tied site pairs are handled includes a 
problem related to the conceptual definition of nestedness: 
pairs of sites (and entire communities) are regarded maxi-
mally (or perfectly) nested by O, Sc and Nrel ′ only if they 
are in a proper (or strict) subset (A Ì B) relationship and site 
pairs with the same species are not nested at all. On the other 
hand, Nrel and S correspond to the broad-sense subset rela-
tionship (A Í B), i.e. sites identical in species composition 
are also considered perfectly nested.

The examples that follow clarify the problem of ties and 
offer examination of the ecological meaningfulness of the results 
yielded by different functions. Site pair kl will have a zero nest-
edness value for O, Sc and Nrel ′ in both of the following cases

k l k l
1 1
1 1
1 1
1 1
1 1
1 1

1 0
1 0
1 0
0 1
0 1
0 1 	

(Ex. 3)

This may not always be appropriate, however, because these 
two pairs represent very different ecological and set theoretical 
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For this pair, O  Sc  Nrel ¢ 0, showing that these func-
tions do not check whether nestedness pattern is shown by 
at least part of the data set. However, even if b  c, one might 
argue that there is a subset of species for which a nested pat-
tern is obvious. It is depicted adequately by Nrel, which pro-
duces a value of 0.5 for Ex. 5. This considers the overlap 
fraction positively, implying that presence of 50% of the 
total number of species is correctly predicted by either site 
with respect to the other. This is consistent with the view 
that tied sites can be positive contributors to the overall mea-
sure of nestedness, i.e. to PRN. 

Sensitivity (or conditioning)

The usual requirement for statistical functions and estimators 
is that small changes in the data should cause proportion-
ally small changes in the results (well-conditioned measures, 
Gentle et al. 2004). However, nestedness measures that con-
sider ties negatively are more sensitive to changes in data 
structure than those accepting tied sites, as the following 
example illustrates

k l k l
0 1
1 1
1 1
1 1
1 0

1 1
1 1
1 1
1 1
1 0 	

(Ex. 6)

The first pair of sites contributes by 0 to the sum in formulae 
1, 2 and 4 because the column totals agree, but when the 
single 0 value in k is modified to 1 (to obtain the pair on 
the right), then the contribution will jump to 1 because l is 
now completely nested in k. That is, O, Sc and Nrel ¢ increase 
from 0 to 1 abruptly. A practical consequence is that these 
pairwise measures are too sensitive to sampling error: over-
looking a single species in the field can inflate the contribu-
tion of a site pair to the final value of the nestedness measure 
considerably. In other words, O, Sc, Nrel ¢ and, to a smaller 
extent NODF, NODFmax and PRSN are ill-conditioned (see 
also Joppa and Williams 2011, for similar view on NODF). 
This is not so with Nrel, and therefore with PRN, because 
the above change causes Nrel to increase from 0.6 to 1. We 
note, however, that sensitiveness upon the change of a  0 to 
a  0 is approximately the same for all pairwise functions.

Metric?

The full name of NODF is misleading, because in statistical 
ecology the term ‘metric’ is normally reserved for a condition 
that a dissimilarity coefficient satisfies the four metric axioms 
(Legendre and Legendre 1998, p. 274). By definition, therefore, 
a similarity measure cannot be a metric. Although more recently 
the term ‘metric’ has been widely used in the ecological literature 
to refer to practically any measure, index, function or a coeffi-
cient of something – we strongly advise against this loose usage 
and recommend retaining its former meaning consistently.

Comparisons

The above examples were selected to emphasize some key 
features of pairwise nestedness measures. However, to draw 

situations. The sites of the first pair are identical in all species 
and therefore fulfill the subset property of nestedness  
(A Í B). Thus, in Ex. (3) the first pair has a contribution 
of Nrel  1 (i.e. PRN  100%), the second Nrel  0 (i.e. 
PRN  0%). The same is true for the Simpson index. We 
note that the left pair has perfect prediction of site presences, 
and packing is without holes, showing the consistency 
of PRN and S– with two other global approaches (Nc and 
Araujo et al.’s method). Accordingly, the left pair in Ex. 3 is 
completely nested, as opposed to the right pair. Nevertheless, 
in calculating NODF, NODFmax or PRSN, the latter pair in 
which we find no species in common, is just as influential 
as the left one: both are counted only in the denominator. 
Ecologically, and set-theoretically as well, it is unfortunate 
that NODF, NODFmax and PRSN do not discriminate 
between cases with complete overlap and complete segrega-
tion. In our view, therefore, PRN and mean S handle the 
problem in an ecologically more meaningful manner.

The meaningfulness problem is illuminated further by 
the following example, derived by slightly modifying the 
previous one

k l k l
1 1
1 1
1 1
1 1
1 1
1 1

1 0
1 0
1 0
1 1
0 1
0 1 	

(Ex. 4)

Here, the situation is perhaps even worse than above: sites  
in the second pair, which have only one species in common 
and differ in 5, contribute positively to NODF, NODFmax 
and PRSN (O  Sc  Nrel ¢ 0.33), while the first pair does 
not (O  Sc  Nrel ¢ 0). Thus, if we insist upon the strict 
definition of nestedness (i.e. pairwise nestedness is positive 
only if species totals differ) we obtain a certainly anomalous 
result. It does not seem ecologically justifiable that any pair 
of sites can contribute positively to nestedness even though 
they have only one species in common just because they 
have different numbers of species, while another pair of 
sites which contain the same number of species (some or 
all identical), contributes negatively (being counted in the 
denominator, while contributing by zero to the numerator). 
Moreover, the left pair is very close to perfect strict nested-
ness, because only one ‘1’ must be replaced by ‘0’ to achieve 
this. On the other hand, that the right pair is not anti-nested 
(i.e. a  0) is caused only by a single species, further ques-
tioning the suggestion that the right pair contributes more to 
nestedness than the left one. These anomalies are resolved by 
the Nrel function because it takes the value of 1 for the first 
pair and 0.33 for the second, so the contributions to PRN 
are remarkably different and ecologically meaningful.

As a final example demonstrating the tie problem, let us 
examine another pair of sites with the same number of spe-
cies (3) such that each site has a single unique species (a  2, 
b  1, and c  1):

k l
1 0
1 1
1 1
0 1 	

(Ex. 5)
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similar behavior: if min(b, c) increases and consequently  
|b2c| decreases, then both Sc and Nrel decrease! Thus, when 
there is considerable similarity (but few identity) in species 
number among the sites, the two functions are expected to 
give similar results.

The analytical comparison of NODFmax and PRSN  
shows the same result as the comparison of NODFmax and 
PRN with the exception that if b  0 then both functions 
result in zero. Finally, the analytical comparison of PRN and 
PRSN shows that they differ only in the richness identity 
fraction if b  c (Eq. 3).

Artificial data

We selected 8 artificial model matrices of Almeida-Neto  
et al. (2008, Fig. 1, matrices a–h) and one matrix of  
Podani and Schmera (2011, Fig. 1, matrix i). For the ran-
dom matrix (Fig. 1a) we obtain that PRN  55%, while  
for the nested matrices with minimum and maximum  
fill (Fig. 1c–d), PRN  100%. These are more meaningful  
scores ecologically than those obtained by NODFmax  
(Table 1). For instance, the random matrix (matrix a) has 
a higher NODFmax value than the nested matrices with 
minimum (matrix c) and maximum (matrix d) fill. If one 
wishes to judge the relative importance of overlap and rich-
ness difference in shaping these values, the percentages can 
be decomposed into parts coming from these two sources, 
allowing a more detailed interpretation of results. For these 
three example matrices, overlap plus richness difference are 
34  21%, 69  31% and 98  2%, respectively, showing 
that the relative and absolute importance of overlap increases 
in that order (Table 1). For perfect nestedness, of course, 
both NODFmax and PRN are maximum, while our approach 
provides the additional information that richness difference 
has much higher contribution to nestedness pattern than 
overlap (Table 1). For model matrices e–i, NODFmax is  
zero, which accords completely with the richness difference 
component of PRN. However, the overlap component of 
PRN is positive for the checkerboard, compartment and 
gradient models, demonstrating that sites with tied species 
richness are not neglected in case of PRN. As required for  
a meaningful nestedness index, both NODFmax and PRN  
are zero for the species replacement and anti-nestedness  
models, because no sites share even a single species. In this  
case, the PRSN values are close or identical to the NODFmax 
values (Table 1, last column), but this is not always the case,  
as the actual examples presented below will demonstrate.

Actual data

Inequalities (9–10) allow us to draw some conclusions 
regarding data structures by examining the plot of Nrel  
versus Sc for all possible pairs of sites. On the basis of the 
mathematical reasoning given in Analytical comparison,  
we can expect that when all points fall above the diagonal 
line connecting points [0,0] and [1,1] the data set will be 
dominated by overlaps between pairs of sites. If all points 
fall below this line, then richness difference becomes the 
predominating factor in presence/absence pattern. We have 

a general and more faithful picture on the performance of  
these approaches, a detailed comparison is required. Here,  
we give a mathematical evaluation of some basic properties 
of Sc, Nrel and Nrel ¢, and then compare the three measures 
using artificial and actual data more exhaustively, includ-
ing an extensive randomization experiment for examining 
the sensitivity of overall measures to type I and type II error 
rates. Note that we do not examine NODF here, because 
we do not want to deal with the effect of the order of sites. 
Computations were performed by the SDRSimplex pro-
gram (Podani and Schmera 2011), http://ramet.elte.hu/∼ 
podani, whereas randomization tests were done by programs 
NestRand and NestTest, written by the first author.

Analytical comparison

First of all, we examine in which cases do Sc and Nrel,  
and therefore NODFmax and PRN provide identical results. 
By definition, Sc and Nrel equal zero when a  0, which is  
a universal requirement for nestedness measures (i.e. non-
zero overlap). For finding further agreements between these 
coefficients, we evaluate the case

a
a b c

a b c
a b c


 2

 min ,( )
| |

	
(5)

It is clear from this expression that Sc  Nrel  1 when 
min(b, c)  0 because in that case | b2c |  b  c. However, 
we must recall the constraint in Sc that b  c, which imposes 
a strong limitation on this equality.

After the following rearrangements,

a
a b c

a b c
a b c b c


 2

  2min , min ,( ) ( )
| |

| |2 	
(6)

and then

a a b c a b c a a b c a b c2 22  2   2 min , min ,( ) ( )| | | |  

                                     | | 2min ,b c b c( ) 	
(7)

we obtain

a b c b c b cmin , min ,( ) ( ) 2| |
	 (8)

which shows clearly that, for any value of min(b, c), Sc and 
Nrel are equal if a  |b2c|. Thus, the following inequalities 
also hold:

Sc Nrel b c  2if a | | 	 (9)

and

Sc Nrel b c b c a  2 2  if or if , buta | | | |  , 0 0        (10)

Consequently, for data sets in which most pairwise over-
laps (a) exceed richness differences (|b2c|) the result is  
that NODFmax  PRN. For data sets where the opposite 
is true, i.e. with overall similarity lower than difference, 
NODFmax  PRN.

One may also be interested to see how the two indices 
perform when the components of m are changed, while  
m is kept constant. In this regard, Sc and Nrel exhibit  
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(d) Maximum fill (e) Checkerboard (f) Compartment

(a) Random (b) Perfect nestedness (c) Minimum fill

(g) Species replacement (h) Anti-nestedness (i) Perfect gradient

Figure 1. Artificial model matrices of Almeida-Neto et al. (2008, matrices a–h) and Podani and Schmera (2011, matrix i). Names of mod-
els as in Podani and Schmera (2011). Note that the checkerboard pattern and the model with two compartments (e) are indistinguishable 
for order-invariant measures.

selected five radically different actual data sets we used for-
merly (Podani and Schmera 2011) for demonstrating the 
decomposition of a  b  c into relative terms. The resulting 
scatter diagrams are presented in Fig. 2.

The points are most scattered for the heterogeneous  
data set of floating mat plants (Tatár 2002). For a given  
value of Sc, there is a wide range of Nrel values, which is 
especially striking for Sc  0. For the meadow sites (Mueller-
Dombois and Ellenberg 1974), most points form a narrow 
cloud, with the few exceptions representing site pairs that 
have the same species totals (similarly to the previous exam-
ple). The point cloud is above the diagonal line reflecting 
that overlap exceeds richness differences, i.e. Sc is higher 
than Nrel. The situation is the opposite for the Colorado 
fish metacommunity (Smith 1978): Nrel is higher than Sc 
in many cases, and most points are positioned below the 
diagonal line. The Channel Islands bird example (Diamond 
and Jones 1980) illustrates a balanced situation, the point 
cloud deviates from the diagonal approximately equally on 
both sides. Finally, for the desert fish data (known to have 

the highest degree of nestedness in ecology, Kodric-Brown 
and Brown 1993), we obtain only three points (not shown 
graphically). For three pairs of sites, Sc  0.0 and Nrel  0.6, 
while for 305 pairs Sc  Nrel  1, and for 70 pairs Sc  0 
while Nrel  1. That is, 73 points are on the bottom line, 
because part of the nestedness pattern is explained by tied 
sites disregarded by Sc. The difference between Nrel and Nrel’ 
is that Nrel ¢ 0 for the points where Nrel ¢  0 and Sc  0. 
Graphically it involves movement of all points at Sc  0 to 
the origin in the Nrel vs Sc plot, whereas the other points 
remain unchanged. Consequently the behaviour of Nrel ¢ is 
more similar to NODFmax than that of Nrel.

Qualitative assessment of the Nrel vs Sc plots may be  
supplemented by examining means and contributions. 
Whereas the joint distributions of Sc and Nrel differ con-
siderably, the means and percentages show less discrepancy 
(Table 2), with some still obvious trends. PRN  NODFmax 
when richness difference (part of beta diversity) is much 
higher than overlaps (Colorado fish). NODFmax  PRN 
when overlaps exceed more than four times richness differences 
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The errors were estimated in the following manner. We 
considered four nestedness indices (PRN, PRSN, NODFmax, 
mean Simpson), whereas the original NODF was not 
included because its order dependence would require an 
additional randomization strategy complicating the study 
unnecessarily. For each index, we used 4 randomization 
strategies disregarding degenerate matrices that potentially 
occur during simulations (i.e. those with zero column or row 
totals): 1) full randomization by maintaining the number of 
presences in the data, 2) randomization by keeping species 
(row) totals fixed, 3) randomization by keeping site (column) 
totals fixed, and 4) randomization such that both column 
and row totals (i.e. all marginal totals) are fixed. We assumed 
that test results depend on how the matrix is saturated with 
presences, so we decided to use three different matrices: low 
fill (32%), medium fill (53%) and high fill (73%, Fig. 3, top 
row). Each model matrix was perturbed step-by-step to 
obtain test matrices. In case of the full randomization model, 
20 pairs of randomly chosen values in the matrix were inter-
changed in each step. For the fixed row total model, two 
values were swapped in every row, whereas in case of the 
fixed column total model, two random values were trans-
posed in every column of the matrix in each step. For the 
fixed row and column totals null model, the test matrices 
were created in the same way as for the fixed row total model, 
because fully nested matrices lack checkerboard submatrices 
without which perturbation by the swapping method can-
not be launched. (Note that Gotelli 2000, used fixed row 
totals for perturbation to create test matrices for all types of 
null models.) That is, since matrix size is 20  20, every step 
involves 20 elementary changing operations for all the four 
strategies. Complete randomness is achieved after approxi-
mately 20 steps (400 interchanges) but we run the analysis 
up to x  50 steps.

Each test matrix was subjected to further randomization 
to obtain the reference distribution of the four nestedness 
statistics. We did 999 complete randomizations of the test 
matrix, from which we calculated the right tail probabil
ities that the random values exceeded the actual statistic for 
the test matrix. Each randomization was achieved through 
Markov Chain Monte Carlo (MCMC) simulation involv-
ing the same type of rearrangement that we used to create 
the test matrices themselves, except for the fixed row-fixed 
column total model in which we used the trial swap method 
(Miklós and Podani 2004) to ensure equiprobability distri-
bution of all possible matrices. Burn-in was 1000, whereas 
sampling was made from the MCMC sequence at 1000-step 
intervals, which ensures adequate mixing because matrix  
size is 400. MCMC was run until 1000 values were obtained 
which offers a sufficiently good estimation of the sampling 
distribution of the four statistics for each noise level, null 
model and each value of fill.

The above procedure was repeated 100 times for every 
combination of null model, fill value and nestedness index, 
and the results were averaged for each value of x for each 
combination (Fig. 3). It strikes the eye immediately that the 
four measures behave almost indistinguishably in cases of 
the less constrained models (the first 3 null models  3 fill 
values). The shape of the curves is also fairly similar in these 
cases suggesting that, on average, all measures have fairly 
similar statistical properties. Low slope at the beginning, 

Table 1. Comparison of NODFmax, percentage relativized nested-
ness and its components (PRN  percentage overlap (similar-
ity)  percentage richness difference, with a  0) for artificial model 
matrices shown in Fig. 1.

 
 
Matrix

 
 

NODFmax

 
Overlap 

%

Richness
difference 

%

 
 

PRN

 
 

PRSN

(a) Random  
(with 50% fill)

45* 34 21 55 46

(b) Perfect nestedness 100 38 62 100 100
(c) Nestedness with 

minimum fill
33 69 31 100 33

(d) Nestedness with 
maximum fill

33 98 2 100 33

(e) Checkerboard 0 40 0 40 0
(f) Compartment 0 20 0 20 0
(g) Species 

replacement
0   0 0 0 0

(h) Anti-nestedness 0   0 0 0 0
(i) Gradient 0 11 0 11 0

*In Almeida-Neto et al. (2008, Table 2) NODF  49 is given. This is 
a wrong result; that NODF  45 is confirmed by the ANINHADO 
program (Guimaraes and Guimaraes 2006).

(meadow). When richness differences and overlaps (simi-
larity) are almost equal, NODFmax and PRN are also simi-
lar (Channel Islands birds). However, closeness in overlap 
and difference components does not always lead to simi-
lar NODFmax and PRN values. As the floating mat plants 
example demonstrates, large deviation in one direction may 
be compensated for by more, closely positioned points on  
the other side of the diagonal, resulting in similar percent-
ages. Yet, the two statistics differ in more than 5 units. The 
very highly nested desert fish data have only a marginally 
higher NODFmax value than the Colorado fish data (80.7 vs 
79.4), while the difference is more pronounced if mea-
sured by PRN (99.7 vs 81.9). This dataset is made perfectly 
nested by changing a single zero value to 1, which is better 
reflected by the score of 99.7 than by 81.9. For the read-
ers’ information, Table 2 includes the PRSN values as well, 
showing that difference from PRN is usually negligible, with 
the exception of the desert fish example in which only 6 spe-
cies occur.

Sensitivity to type I and type II error rates

Following the guidelines given by Gotelli (2000), we used a 
‘noise test’ to examine the sensitivity of nestedness measures 
to type I and type II error rates. We started with a perfectly 
nested (i.e. structured) matrix and then gradually perturbed 
it to obtained increasingly random matrices. A nestedness 
measure, which is vulnerable to type II error, does not detect 
significant nestedness even if there is only little randomness 
in the data, so the curve of right tail probabilities (p) versus 
noise level (x) start to increase too early. Conversely, a nest-
edness measure is prone to type I errors if significant nested-
ness is indicated even when a matrix is greatly randomized, 
which is reflected by the very low slope of the p-x curve. 
Thus, plotting right tail probabilities versus the noise level 
by which a fully nested matrix is perturbed is useful to draw 
conclusions on both types of errors simultaneously (Fig. 5 in 
Gotelli 2000).
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Figure 2. Relationship between Nrel and Sc for four actual data sets. Diagonal lines connect points [0,0] and [1,1] to enhance interpretation. 
The axes are not centered to the origin in order to make points at Sc  0 visible.

dramatic increase afterwards, and then leveling off after fair 
randomness is achieved indicate that the measures are not 
susceptible to type I and type II errors (see the ideal curve 
in Gotelli 2000, his Fig. 5). Nevertheless, there are subtle 
differences that deserve our attention. Of the nine cases, 
the fixed column total model for the high-fill data (Fig. 3) 

exceeds the conventional p  0.05 level the earliest, after  
five steps. This means that under the corresponding null 
model (site totals are constant) the chance for committing 
type II error is the highest for dense data matrices. In the 
other cases, x  10 steps were needed to leave the p  0.05 
zone, suggesting higher statistical power (i.e. much lower 

Table 2. Comparison of NODFmax, PRN, PRSN and the mean Simpson index for five actual data sets, showing the two additive components 
of PRN (overlap and richness difference) as well.

Meta-community NODFmax Overlap % Richness difference % PRN PRSN Mean Simpson

Floating mat plants 58.7 31.2 32.9 64.1 61.7 0.620
Meadow 58.0 41.4   8.6 50.0 47.4 0.617
Colorado fish 51.4 12.8 46.7 59.5 59.5 0.514
Channel I. birds 79.4 40.1 41.8 81.9 79.7 0.821
Desert fish 80.7 54.8 44.9 99.7 80.7 0.998
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Figure 3. ‘Noise tests’ of four nestedness measures based on three different nestedness patterns (20 species by 20 sites data matrices)  
and four null models. The x-axis (0 to 50) is the noise level applied to obtain test matrices: 203 is the number of value pairs transposed in 
the matrix in full randomization, and x is the number of value pairs transposed within each row (species totals fixed) and each column  
(site totals fixed) in the second two cases, respectively. For the fourth model, with all marginal totals fixed, perturbation was achieved in the 
same way as for the fixed species total model. The y axis is the tail probability (p value) obtained from 999 randomizations, with the 0.05 
level indicated by a dashed line. Each point is the average of 100 independent runs. The differences between the nestedness measures are so 
small that the corresponding symbols are hard to distinguish in all but one panels (diamonds: PRN, squares: PRSN, triangles: NODFmax, 
X: mean Simpson index).
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results summarized in Table 3. There is considerable agree-
ment among functions, and a somewhat weaker agreement 
among the null models. At the first two dates, the faunistic 
pattern is significantly non-nested, while in case of the third 
date all but one models allow detecting significant deviation 
towards nestedness (p  0.05), the exception being the fixed 
site totals model. By the last date, i.e. one year after treat-
ment, the distributional pattern of arthropods is unequivo-
cally more nested than randomly expected. That is, as far as 
departure towards nestedness is concerned, recolonization of 
the island is successful. 

Discussion

Nestedness measures may be categorized in several ways, 
which is helpful for the ecologist when selecting among 
the various possibilities. Technically, global indices derive 
a single value directly from the data (e.g. nestedness tem-
perature), whereas measures in the other group operate via 
calculating pairwise functions. In this paper, interest was 
focused on the properties of the latter group (Fig. 4). We did 
not examine Nc because of its dependence on matrix size, a 
problem solved by using relativized pairwise measures and 
their means. NODF is the only function that depends on 
the arrangement of columns in the data matrix. Therefore, 
we recommend its use only if there is some a priori ordering 
information on sites (e.g. a well-defined ecological gradient, 
or a biogeographical sequence such as a set of islands increas-
ing in size, see examples in Lomolino 1996) which must be 
kept fixed when evaluating nestedness (Almeida-Neto et al. 
2008, p. 1230). Otherwise, we suggest a modification of this 
function which always produces the maximum, and there-
fore a unique value (NODFmax), demonstrating that pairwise 
analysis does allow order-invariant solutions for the quantifi-
cation of nestedness. The other three measures (PRN, PRSN 

probability of type II error). The best overall statistical per-
formance is detected for the full randomization model and 
the matrix with medium fill: here we see the steepest incre-
ments at intermediate values of x, that is, the best realiza-
tion of the ideal curve. Upon scrutiny of figures enlarged, 
we can also see that for full randomization and the model 
with species totals fixed, the curves of PRSN and NODFmax 
run slightly below the curve of the other two functions 
until complete randomness is achieved. These demonstrate 
that functions excluding tied site totals are sensitive a little 
bit more to type I errors (and less prone to type II errors) 
than those considering tied sites. In other words, on aver-
age a little more random matrices are considered by PRSN 
and NODFmax significantly nested than by PRN and mean 
Simpson. However, when simulations are constrained so as 
to keep site totals fixed, no such differences can be revealed.

The most constrained null model, with all marginal totals 
fixed, provides different results (Fig. 3, bottom panels). For 
the matrix with low fill, all measures remain much below 
the p  0.05 level over the entire range of noise, which is 
indicative of high type I error. The situation is similar for the 
matrix with medium fill, because only a slight increase of tail 
probabilities is achieved up to the 50th step. The results are 
somewhat closer to those of the less constrained models for 
the matrix with high fill: the two statistics which disregard 
tied sites (PRSN and NODFmax) perform fairly well because 
these show the same trend after 10 steps as for the less con-
strained models. PRN is more vulnerable to type I error and 
therefore has more power, whereas the mean Simpson index 
remains below the p  0.05 level, still indicating significant 
difference even though the other three statistics fall inside 
the acceptance region.

The present study is completed by the significance tests 
of data matrices used in this paper as well as those in Podani 
and Schmera (2011). We use the same procedure as above, 
i.e. the observed statistics are compared with 999 simulated 
values. For the small random data set (Fig. 1a), all models 
and all measures suggest acceptance of the null hypothesis 
(non-nestedness), such that right tail probabilities were the 
highest for NODFmax (p  0.53) and the lowest for PRN 
(p  0.26). For the five actual data sets used in this paper 
(Colorado fish, meadow, floating mat plants, Channel Island 
birds and desert fish), all models and all the four measures 
suggest rejection of the null hypothesis, i.e. all these matrices 
exhibit nestedness pattern significantly different from ran-
dom (usually, p  0.01). This suggests that an average PRN 
value of 50% or higher (Table 2) is a rough indication of 
significant nestedness by itself at the conventional p value of 
0.05, and that further distinction between significant cases 
would require several orders of magnitude more randomiza-
tions than used in this paper (i.e. 10 million randomizations 
would be necessary to get better estimates of p).

To illustrate how nestedness tests are influenced by an 
ecological process, we use the islet arthropod data of Rey 
(1981) who recorded the fauna at irregular intervals for a 
year to monitor the recolonization of islets after defaun
ization by insecticides. We took the data from the 10th, 
13th, 20th and 53rd weeks after treatment and found that 
the resulting trends are quite clearly visible in the simplex 
diagrams (Podani and Schmera 2011). If we now focus our 
interest on testing only the nestedness pattern, we obtain the 

Table 3. Right tail probabilities for four nestedness measures in case 
of four actual data sets representing stages of insect recolonization 
on an island (Rey 1981), with four null models (from top to bottom 
for each data set: full randomization, randomizing with fixed  
species totals, randomizing fixed site totals, and randomization with 
all marginal totals fixed). Each probability value is based on 999 
randomizations of the data matrix by MCMC with sampling interval 
2.5 times the size of the matrix (no. of species by no. of sites, in 
brackets). Values significant at p  0.05 are shown in bold.

Sampling date PRN PRSN NODFmax Mean Simpson

Week 10 (6  25) 0.375 0.422 0.622 0.637
0.280 0.294 0.409 0.377
0.266 0.276 0.507 0.495
0.345 0.349 0.497 0.525

Week 13 (6  27) 0.387 0.574 0.577 0.134
0.539 0.710 0.832 0.363
0.088 0.340 0.375 0.066
0.388 0.558 0.576 0.135

Week 20 (6  33) 0.007 0.006 0.010 0.018
0.013 0.011 0.007 0.013
0.142 0.142 0.124 0.124
0.005 0.003 0.008 0.017

Week 53 (6  33) 0.001 0.001 0.001 0.001
0.008 0.011 0.014 0.007
0.002 0.002 0.002 0.002
0.001 0.003 0.002 0.001
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As a relaxation of the dilemma over this issue, we have dem-
onstrated (Podani and Schmera 2011, Table 2) that the 
broad and strict versions of the percentage relativized nest-
edness measure (PRN and PRSN, respectively) provide only 
marginally different results when applied to actual data sets, 
especially if the number of species is large. It means that the 
dispute over including or excluding tied sites in pairwise 
comparisons is often without practical relevance.

A more critical conceptual issue concerns which features 
of presence-absence pattern should be incorporated in the 
nestedness measure. NODF and NODFmax, being derived 
from the Simpson similarity coefficient, overemphasize the 
overlap component of nestedness and underrate the beta 
diversity component (Fig. 4). While the use of NODF 
solves certain statistical problems detected for global indi-
ces (Almeida-Neto et al. 2008), the implicit restriction to 
similarity has not yet received sufficient attention. For the 
PRN (percentage relativized nestedness) function (Podani 
and Schmera 2011), richness difference – a fraction of beta 
diversity – is also considered as a direct indicator of nested-
ness pattern, which agrees well with the observation of many 
ecologists that only the species replacement component of 
beta diversity is antagonistic to nestedness. Not surprisingly, 
then, the performance of conditional similarity (Sc) and rela-
tivized nestedness (Nrel ) functions may differ remarkably, 
depending on internal data structure. Theory suggests and 
examples demonstrate that fair agreement between them is 
expected when richness differences are minor; otherwise dis-
crepancy may be substantial. The observation that NODFmax 
and PRN do not contradict radically each other probably 
comes from the fact that calculating arithmetic averages of 
the constituting Sc and Nrel functions diminishes differences 
in other distributional properties of these statistics.

There is a current trend to incorporate null models and 
permutation tests into newly developed measurement tech-
niques in statistical ecology. As our study shows, the exami-
nation of the behaviour of new methods based on some 
example situations should complement more sophisticated 
simulation studies. Without doing so, widespread applica-
tion of measures and their statistical tests may lead to false or 

and the mean of Simpson index) are also independent of 
matrix ordering. We think that it is important both theo-
retically and practically to have order-invariant measures, 
because our attention can be focused on true community 
properties unaffected by the manner the data are presented  
before calculations, which is often a technical issue and  
does not reflect any genuine ecological relationship. Order 
invariance appears an especially useful property whenever 
bipartite neworks are evaluated for nestedness (Bascompte  
et al. 2003) because in these cases no external criteria for 
ordering are available, yet in these cases NODF has been 
used extensively (Fortuna et al. 2010).

Our comparative analysis disclosed a conceptual contro-
versy existing in the literature of nestedness, namely, whether 
site pairs with tied column totals are considered negatively 
or positively and, consequently, perfect nestedness should be 
interpreted as a proper subset or as a broad subset relation-
ship. Several global measures such as the nestedness tem-
perature are influenced as much as different permutations 
of sites with tied totals produce different results (Roberge 
et al. 2009), a minor aspect of order dependence discussed 
above. Whether or not to ignore ties appears very critical 
in pairwise comparisons. The original NODF, NODFmax as 
well as PRSN consider tied pairs as negative contributors to 
nestedness (Fig. 4). The problem with these functions is that 
they are relatively sensitive to minor changes in the data and 
the results may be at variance with intuitive expectations of 
the ecologist (e.g. in the treatment of fully identical and fully 
segregated site pairs with equal richness). Users should keep 
these considerations in mind when selecting any of these 
methods. We argue that measures are well-conditioned and 
results are more interpretable ecologically when tied pairs 
are counted positively, i.e. nestedness is understood in a less 
restrictive manner. This is achieved by Nrel and the derived 
PRN function or the mean of the original Simpson similar-
ity index: these consider site pairs with identical species totals 
positively, no matter whether b  c  0 or b  c  0. We note 
only that change from Sc to S means that all points in the 
Nrel vs Sc plot at Sc  0 move up to positions determined by 
the corresponding S  a/(a  b) value, thus S–  NODFmax. 

Pairwise nestedness measures

Sum/absolute Mean/relativized

Overlap
Overlap +
richness diff.

Mean

Simpson

PRN

PRSN NODF
max

NODF

Order-invariant Order-dependent

Ties count
positively

Ties count
negatively

N
c

Figure 4. A tree-like summary of conceptual and technical issues to be considered when selecting pairwise measures of nestedness.
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Roberge, J. et al. 2009. Calculating minimum discrepancy to assess 
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Ulrich, W. et al. 2009. A consumer’s guide to nestedness analysis. 
– Oikos 118: 3–17.
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urement of nestedness of species assemblages. – Oecologia 92: 
416–428.

Wright, D. H. et al. 1998. A comparative analysis of nested subset 
patterns of species composition. – Oecologia 113: 1–20.

unsubstantiated conclusions. The simulations revealed that 
statistical testing of nestedness pattern via pairwise measures 
is practically free from type I and type II errors for the less 
constrained null models. The exceptions are matrices with 
high fill in cases when site totals are fixed during random-
izations. Jonsson (2001) suggests not to use the fixed site 
totals model in nestedness tests anyway. The randomization 
model with all marginal totals fixed has completely different 
statistical properties. For low and medium fill, type I error is 
very high, whereas this error decreases as matrix fill increases. 
Then, for high matrix fill, the differences between statistics 
become more substantial than above: PRSN and NODFmax 
outperform PRN and especially mean Simpson. In actual 
situations examined in this paper, differences between null 
models and observed measures did not influence the conclu-
sions (except for the arthropod data in week 20). The practi-
cal consequence is that there is a set of measures with high 
statistical power for nestedness analysis, which is not so with 
some global indices of nestedness (Jonsson 2001, Almeida-
Neto et al. 2008) and with measures of species co-occurrence 
patterns (Gotelli 2000) whose results depend much more on 
the underlying null models.

According to Ulrich et al. (2009), NODF has the appeal-
ing feature that total nestedness can be decomposed into 
contributions by columns and rows in the data. However,  
PRN and PRSN can also be extended easily to this direction, 
by calculating the weighted average of PRNcols and PRNrows 
(and PRSNcols and PRSNrows, respectively). In our view, 
therefore, the PRN measure satisfies all requirements for 
being an ecologically meaningful and interpretable statisti-
cal function for measuring nestedness. Further advantage 
of PRN is its compatibility with the conceptual and meth-
odological framework we proposed (Podani and Schmera 
2011) for elucidating pattern in presence-absence data. The 
so-called SDR simplex approach is suitable to analyzing the 
relative weight of nestedness, beta diversity, and other fea-
tures in shaping (meta-)community assembly both graphi-
cally and numerically.
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