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Summary

1. Network ecology has been an extraordinarily fertile field of research over the last 20 years. Its ultimate goal is

to understand how the complex systems of interdependent species assemble, function and evolve. Here, we aimed

to help ecologists to select the best methods for detecting subgroups of highly interacting species (usually referred

to as compartments or modules) in bipartite networks (e.g. plant–pollinator networks, host–parasite networks),
because these subgroups may reveal the processes underlying the assembly of the network and may influence its

stability.

2. We simulated several thousand bipartite ecological networks and we compared seven methods of network

clustering in terms of their ability to retrieve the number and the composition of species subgroups.

3. Among the seven methods compared, we found that the edge-betweenness algorithm was the best option for

binary networks. The stochastic blockmodel was the bestmethod for weighted networks.Modularitymaximiza-

tion, themost popular clusteringmethod in ecology, was among the three best methods in both cases.

4. We thus provide ecology researchers with precise advice concerning the best choice of network clustering

method, according to the type of data collected. We also provide the code for simulating bipartite networks and

clustering them, in order to facilitate futuremethodological comparisons.
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Introduction

Networks are an extraordinary tool for portraying the com-

plexity of biological systems. In ecology, networks are used for

representing the complex interactions (network links) between

species (network nodes). Foodwebs are the ecological networks

representing predator/prey interactions, whereas bipartite eco-

logical networks usually represent long-lasting, intimate inter-

actions between two sets of species (hereafter referred to as the

basal species and the top species; e.g. plant species and their

pollinators, or host species and their parasites). Both food

webs and bipartite ecological networks usually contain several

subgroups of species, within which the similarity in interaction

patterns is higher (Allesina & Pascual 2009) or interactions are

denser (Newman&Girvan 2004). This latter kind of subgroup

is usually referred to as compartment (Krause et al. 2003) or

module (Olesen et al. 2007).

The detection of species subgroups in real ecological net-

works is important to ecologists for three reasons. First, their

visual representation (i.e. a plot with nodes pertaining to the

same subgroup having the same colour) provides a simplified

picture of the network (Allesina & Pascual 2009). Second, they

may suggest the processes underlying the assembly of the net-

work (Vacher, Piou & Desprez-Loustau 2008; Rezende et al.

2009; Krasnov et al. 2012). Third, as suggested by mathemati-

cal models (Th�ebault & Fontaine 2010; Stouffer & Bascompte

2011), they may influence the functioning (including stability,

in particular) of the network. If their influence is confirmed by

experimental studies (Rip et al. 2010), they could thus become

a relevant target for ecosystem conservation and restoration

programmes.

Since the publication of the seminal article by Olesen et al.

(2007), modularity maximization with a simulated annealing

algorithm (Guimer�a & Amaral 2005; Guimer�a, Sales-Pardo &

Amaral 2007) has been the most widely used method for

detecting subgroups of highly interacting species in ecological

networks. It was adapted for application to bipartite networks

(Barber 2007; Guimer�a, Sales-Pardo&Amaral 2007; Th�ebault

2013; Dormann & Strauß 2014). Other methods for detecting

modules in unipartite or bipartite networks (Fortunato 2010;

Leger, Vacher &Daudin 2013), originating from various fields

of research (physics, mathematics, statistics, computer sci-

ence), have been less used in ecology.

Here, we compare the ability of seven graph clustering

methods to detect subgroups of highly interacting species in

bipartite ecological networks. These methods, which corre-

spond to a subset of the methods described in detail by

Leger, Vacher & Daudin (2013), are representative of the

various approaches that can be used for clustering networks.

The seven methods are the modularity maximization method

(Newman 2006), the edge-betweenness algorithm (Girvan &
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Newman 2002), two variants of the Markov cluster algorithm

(Leger, Vacher & Daudin 2013), two spectral clustering meth-

ods [Ng-normalized spectral clustering (Luxburg 2007) and

absolute eigenvalues spectral clustering (Rohe, Chatterjee &

Yu 2011)] and the stochastic block model (Mariadassou,

Robin & Vacher 2010). We compared the performances of

these methods, by applying them to simulated ecological net-

works containing known subgroups. We compared the ability

of each of the seven methods to retrieve the number of sub-

groups and the composition of subgroups for both weighted

and binary networks. The simulation algorithm, derived from

that of Th�ebault & Fontaine (2010), was not related to any

clustering method and therefore did not favour any one

method over the others. We first compared the clustering

methods for intermediate ecological networks (simulated by

fixing the network properties to their mean ecological value).

We then assessed the robustness of our comparison to varia-

tions in network properties, by allowing these properties to

vary within a range slightly larger than the ecological range.

Methods

CHOICE OF NETWORK CLUSTERING METHODS AND

GENERAL IMPLEMENTATION FRAMEWORK

The seven methods compared are of two kinds (Allesina & Pascual

2009; Leger, Vacher & Daudin 2013): those that detect sets of highly

interacting nodes (hereafter called communities) and those that detect

sets of nodes with similar interaction patterns (hereafter called structur-

ally homogeneous subsets). The two kinds of methods belong to differ-

ent lines of research, but the differences between them are not entirely

clear-cut, because nodes within a community tend to have similar inter-

action patterns. Both kinds of methods may thus be used to detect sub-

groups of highly interacting species in bipartite ecological networks

(Leger, Vacher &Daudin 2013).

Four of the seven methods tested were initially developed for the

detection of communities: themodularity maximizationmethod (New-

man 2006), the edge-betweenness algorithm (Girvan&Newman 2002),

the Markov cluster algorithm (van Dongen 2000) and the Ng-normal-

ized spectral clustering method (Luxburg 2007). The other three were

initially developed for the detection of structurally homogeneous clus-

ters: a reparameterized version of theMarkov cluster algorithm (Leger,

Vacher & Daudin 2013), the absolute eigenvalues spectral clustering

method (Rohe, Chatterjee & Yu 2011) and the stochastic block model

(Mariadassou, Robin&Vacher 2010). Due to the large number of sim-

ulated networks, the modularity maximization method was imple-

mented here with a fast algorithm (Newman 2006). Modularity

maximization with a simulated annealing algorithm (like inGuimer�a &

Amaral 2005;Guimer�a, Sales-Pardo&Amaral 2007) ismore time-con-

suming (a couple thousandmore) andwas thus only applied to a subset

of the networks.

We implemented the seven methods see Appendix S1 for details,

based on their original descriptions, by using a combination of m-code

(MATLAB language) andC++ (bothused inGNUOCTAVE), and some functions

of the C-library IGRAPH (Csardi & Nepusz 2006). The code is available

online (https://gitlab.crans.org/leger/clustering_methods_comparison).

Two types of implementation were used for each method. We first

allowed the method (or the associated criteria) to select the optimal

number of subgroups. We then forced the method to perform the clus-

tering analysis with the true number of subgroups. The adjustments

required to perform the two types of implementation are described in

Appendix S1.

SIMULATION OF ECOLOGICAL BIPARTITE NETWORKS

We adapted the algorithm developed by Th�ebault & Fontaine (2010),

to simulate weighted bipartite networks (Appendix S1). The algorithm

parameters were the number of top species nB, the number of basal spe-

cies nT, the total number of links nL, the total weight of all links nW, the

number of subgroups g, the degree of compartmentalization pcomp and

the degree of nestedness pnest.

An analysis of 47 ecological networks taken from the Interaction

Web Database (Table S1) revealed that some pairs of parameters

(from the list nB, nT, nL and nW) were highly correlated. Thus, had we

allowed these parameters to vary independently, the simulated net-

works generated would have been different from real networks. We,

therefore, performed a reparameterization (Appendix S1). The four

new parameters, which were almost independent, were: the number of

all possible links kS = nBnT, the ratio kR = nB/nT of the number of

basal species to the number of top species, the mean weight of edges

kW = nW/nL and the parameter kL = nL/kS
0�63. The parameter kL is

linked to the network connectance C = nL/kS (i.e. the proportion of

possible links between species that actually occur) by the relation

C = kL/kS
0�37. For simplicity, the number of all possible links kS is

referred to as network size and the parameter kL is referred to as net-

work connectance.

Based on the 47 real ecological networks (Table S1), we estimated

the ecological ranges for these four new parameters (Table S2). The

ranges used for simulations were slightly larger than the ecological

ranges. It was not possible to give an ecological range for g, pcomp and

pnest, because these three parameters cannot be measured in real net-

works.We therefore simply varied themover a large range of values.

We also used the 47 ecological networks taken from the Interaction

Web Database (Table S1) to calculate a geometric mean value for the

four new parameters (Table S2). These values are referred to as inter-

mediate ecological values. An intermediate network simulated with

such values had 64 top species, 18 basal species, 120 edges and a total

weight of 1018. We arbitrarily chose g = 4, pcomp = 0�6 and pnest = 0�5
as intermediate values. This choice corresponds to a strongly compart-

mentalized and nested networkwith four subgroups.

To validate our simulation approach, we then compared simulated

networks to real ecological networks for five topological properties

(Table S1): the cumulative distribution of degrees for each level of the

network (Fig. S1), the frequency distribution of dependence for each

level of the network (Fig. S2) and the frequency distribution of the

asymmetry values of dependences (Fig. S3), as defined by Bascompte,

Jordano&Olesen (2006). The distributions in simulated networks were

similar to those observed in previous studies (Jordano, Bascompte &

Olesen 2003; Bascompte, Jordano & Olesen 2006) for real ecological

networks.

Finally, we compared the performance of clustering methods for

intermediate ecological networks by first simulating 1000 weighted net-

works, keeping all the parameters fixed at their intermediate value. We

then assessed the robustness of ranking by the methods to variations in

network properties, by simulating networks with all the parameters

fixed to the intermediate value other than one, which was allowed to

vary within the simulated range. This variable was allowed to take 10

different values (except for the number of groups, which took only four

values). We simulated 100 networks for each parameter combination.

This simulation design resulted in 6400 weighted networks. We then
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obtained the binary versions of all networks, by replacing positive

weights by unitary weights, and repeated the comparison of clustering

methods.

CRITERIA USED FOR COMPARISONS OF THE EFFICACY

OF THE CLUSTERING METHODS

We first compared the ability of the methods to retrieve the true num-

ber of subgroups, by calculating the ratio of the number of groups esti-

mated by the clustering method to the expected number of subgroups.

A ratio >1 indicates that the clustering method overestimates the num-

ber of subgroups, whereas a ratio below 1 indicates that the method

underestimates the number of subgroups. The expected number of sub-

groups was g in the case ofmethods initially developed for the detection

of communities. The expected number of subgroups was 2 9 g in the

case of methods initially developed for the detection of structurally

homogeneous subsets. Indeed, for bipartite networks, this type of

method splits communities into two subgroups (Leger, Vacher &

Daudin 2013), one containing the basal species and the other, the top

species.

We then assessed the ability of each clustering method to retrieve the

composition of subgroups. For each simulated network, we compared

the composition of subgroups delimited by the clustering method with

that of the true subgroups, using the adjusted Rand index (Hubert &

Arabie 1985). The Rand index is a measure of the similarity between

two partitions. Let Pobs be the partition obtained by a given clustering

method andPtrue the true partition. Two species may be (a) in the same

subgroup according to both Pobs and Ptrue, (b) in the same subgroup

according to Pobs but not Ptrue, (c) in the same subgroup according to

Ptrue but not Pobs or (d) in different subgroups according to both Pobs

and Ptrue. Let a–d be the corresponding numbers of cases. The Rand

index is defined by R = (a + d)/(a + b + c + d), the proportion of

cases in agreement. It can be adjusted to take its values in the range

[�1, 1]. A value of 0 corresponds to an expectation of random

clustering. A positive value indicates clustering better than would

be expected by chance, and a value of 1 indicates perfect clustering.

A negative value indicates clustering that is worse than would be

expected by chance. We calculated two adjusted Rand indices, one

indicating the quality of clustering for the basal network level and

the other indicating the quality of clustering for the higher network

level. All simulated networks and raw results are available online

(https://gitlab.crans.org/leger/clustering_methods_comparison).

Results

COMPARISON OF THE GRAPH CLUSTERING METHODS

FOR WEIGHTED NETWORKS

For weighted ecological networks with intermediate proper-

ties, the stochastic block model was the clustering method giv-

ing the most precise estimate of the number of subgroups

(Fig. 1a). According to the adjusted Rand index (Hubert &

Arabie 1985), it also retrieved their composition very effec-

tively (Fig. 2a,b). It retrieved the composition of basal species

subgroups (Fig. 2a) more effectively than that of top species

subgroups (Fig. 2b), and this trend was also observed for all

othermethods.

The edge-betweenness algorithm (with the modularity crite-

rion for selecting subgroup number) greatly overestimated the

number of subgroups (by a factor of 2–6, on average) in

weighted networks (Fig. 1a), but was otherwise highly effective

for retrieving their composition (Fig. 2a,b). These findings

indicate that the edge-betweenness algorithm generates split

subgroups in weighted networks. Disappointingly, constrain-

ing the algorithm to produce a number of subgroups closer to

the expected number (to facilitate the interpretation of cluster-

ing results, for instance), greatly decreases the ability of the

edge-betweenness algorithm to retrieve subgroup composition

(Fig. S4).

Modularity maximization and one of the two variants of the

Markov Chain Clustering algorithm (MCL1/10) were the mod-

els with the best performance after the stochastic block model,

in terms of their ability to retrieve species subgroups. Both

methods satisfactorily retrieved the composition of species sub-

groups (Fig. 2a,b). MCL1/10 also effectively retrieved the num-

ber of subgroups (Fig. 1a). Modularity maximization

implemented with a fast algorithm overestimated the number

of subgroups (by a factor of 2–4, on average; Fig. 1a), and con-
straining the method to retrieve fewer subgroups did not

decrease its ability to retrieve the composition of species sub-

groups (Fig. S4). Modularity maximization with a simulated

annealing algorithm also overestimated the number of groups

(a) (b)

Fig. 1. Ratio of the estimated number of subgroups to the expected number of subgroups in the case of (a) weighted networks and (b) binary net-

works. In each case, the results are based on 1000 ecological networks simulated with intermediate values for ecological properties. The seven cluster-

ing methods compared here were the modularity maximization method (Mod), the edge-betweenness algorithm (EB), two variants of the Markov

cluster algorithm (MCL and MCL1/10), the Ng-normalized spectral clustering method (NSC), the absolute eigenvalues spectral clustering method

(ASC) and the stochastic blockmodel (SBM). The horizontal dashed line indicates the value of 1. Ratios >1 indicate that the clusteringmethod over-

estimates the number of subgroups and ratios below 1 indicate that themethod underestimates the number of subgroups.
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and retrieved the composition of subgroups slightly better than

modularity with a fast algorithm (Fig. S5).

The variation of network properties modified the ability of

the methods to retrieve the number of subgroups. All meth-

ods other than the stochastic block model and one variant of

the Markov cluster algorithm (MCL1/10) tended to overesti-

mate the number of subgroups, particularly for large net-

works (Fig. 3) or if the true number of groups was low

(Fig. S6). This was particularly true for the edge-betweenness

algorithm and the modularity maximization method. The

edge-betweenness algorithm was also extremely sensitive to

the degree of compartmentalization and nestedness of the

network (Fig. 3).

The variation of network properties alsomodified the ability

of the methods to retrieve subgroup composition. As expected,

all methods performed better in terms of subgroup retrieval if

the degree of compartmentalization was high (Fig. 3). Very

high levels of nestedness modified the ranking of the methods.

In this situation, the modularity maximization method and

Ng-normalized spectral clustering performed slightly better

than the other methods (Fig. 3). Finally, for most clustering

methods, the ability to retrieve subgroups increased with the

true number of subgroups and network connectance, but

decreased with network size (Fig. 3).

On the basis of these results, we conclude that the three best

clustering methods for weighted networks are, in descending

order of performance: the stochastic block model, one variant

of the Markov Chain Clustering algorithm (MCL1/10) and the

modularity maximization method. The edge-betweenness

algorithm (with themodularity criterion for selecting subgroup

number) appears to be a poorer choice in this context, because

it overestimates the number of subgroups, cannot retrieve the

composition of subgroups when the number of subgroups is

constrained to lower values and is highly sensitive to network

properties.

COMPARISON OF THE GRAPH CLUSTERING METHODS

FOR BINARY NETWORKS

The binarization of the simulated ecological networks greatly

decreased the ability of all methods to retrieve the composition

of species subgroups (Fig. 2). For binary ecological networks

with average properties, the edge-betweenness algorithm (with

the modularity criterion for selecting subgroup number) was

the best method for retrieving the number of subgroups

(Fig. 1b) and their composition, for both basal species

(Fig. 2c) and top species (Fig. 2d). The variation of network

properties did not affect the top ranking of the edge-between-

ness algorithm for binary networks. This algorithm gave the

best results in all situations except that of high network connec-

tance (Fig. S7).

Modularity maximization and one variant of the Markov

Chain Clustering algorithm (MCL1/10) also gave satisfactory

results for retrieval of the number of subgroups (Fig. 1b) and

the retrieval of subgroup composition (Fig. 2c,d). Modularity

maximization was slightly better than MCL1/10 for retrieving

the composition of subgroups for a wide range of parameters

(Fig. S7).

The stochastic block model had the poorest performance

with binary networks, as it was able to delimit only the two tro-

phic levels. Its performance was improved by entering the true

number of subgroups as an input parameter (Fig. S4), suggest-

ing that the integrated completed likelihood (ICL) criterion

(Daudin, Picard & Robin 2008) used for the selection of group

number in this method is not suitable for studies of bipartite

binary ecological networks.

(a) (c)

(d)(b)

Fig. 2. Ability of the clustering methods to

retrieve the composition of species subgroups,

as assessed by the adjusted Rand index (ARI),

in the case of (a) basal species in weighted net-

works, (b) top species in weighted networks,

(c) basal species in binary networks and (d)

top species in binary networks. In each case,

the results are based on 1000 ecological net-

works simulated with intermediate ecological

properties. The abbreviations for the cluster-

ing methods are as in Fig. 1. An adjusted

Rand index of 1 indicates a perfect retrieval of

the subgroup composition and an adjusted

Rand index close to 0 indicates that the clus-

tering is close to random.
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On the basis of these results, we conclude that the three best

clustering methods for binary networks are the edge-between-

ness algorithm (with the modularity criterion for selecting sub-

group number), followed by the modularity maximization

method and one variant of theMarkov Chain Clustering algo-

rithm (MCL1/10). The stochastic block model, for which the

number of subgroups is defined by the ICL criterion, should

not be used in this situation.

COMPARISON OF THE GRAPH CLUSTERING METHODS IN

TERMS OF COMPUTATION TIME

The clustering methods also differed in terms of their com-

puter running time (Table 1). This is an important criterion

for method selection, particularly when large sets of networks

are to be analysed. The modularity maximization method,

when implemented with a fast algorithm (Newman 2006),

was the fastest method. The stochastic block model was the

slowest.

Discussion

We obtained a clear ranking of the methods in terms of their

ability to retrieve subgroups of highly interacting species from

ecological bipartite networks, making it possible to provide

ecology researchers with precise advice concerning the best

choice of graph clusteringmethod.

Among the seven methods compared, the stochastic block

model emerged as the best option for weighted networks. It

precisely retrieved the composition of species subgroups and

precisely estimated their number. This second feature is impor-

tant because a clusteringmethod that generates split subgroups

by overestimating the number of subgroups, while retrieving

their composition accurately may lead the researcher to
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interpret ecological discontinuities that do not actually exist.

This would be a considerable waste of time and would give rise

to false ecological theories. The only drawback of the stochas-

tic block model was its slowness, particularly for large net-

works. This may not be an issue when analysing a couple of

real ecological networks, but it is more problematic for the

analysis of several thousand simulated networks.

The edge-betweenness algorithm (with the modularity crite-

rion for selecting subgroup number) consistently gave the best

results for binary networks of any of the clustering methods

tested here. It retrieved the precise composition of the sub-

groups, and onlymoderately overestimated the number of sub-

groups.

Modularity maximization, the most popular clustering

method in ecology, gave good results for both weighted and

binary networks, although it also moderately overestimated

the number of subgroups. It was among the three best methods

for awide range of ecological networks.With the efficient algo-

rithmic version of modularity maximization (Newman 2006)

used here, this method also turned out to be the fastest of the

seven methods tested here. Modularity maximization should

thus be considered as an alternative to the stochastic block

model in situations in which several thousand weighted net-

works must be analysed in a reasonable amount of time. The

new MODULAR (Marquitti et al. 2013) software suite could be

used in such situations, for example.

One variant of the Markov Chain Clustering algorithm

(MCL1/10) also emerged as a good option on the basis of our

results, but this method has to prove its worth because it is new

(developed by Leger, Vacher & Daudin 2013) and has never

been applied to real networks until now.

Our results also showed that all clustering methods per-

formed less well with binary networks than with weighted

networks. We thus recommend the collection and analysis

of quantitative interaction data, to ensure the discovery of

the real network structure.

Finally, our methodological comparison generated an

unexpected finding, as it revealed that all clustering methods

performed asymmetrically. Species subgroups were generally

more accurately retrieved for basal species than for top

species. The clusters of basal species identified in weighted

bipartite networks are thus the most robust and can be inter-

preted with more confidence than other clusters.

This asymmetry may be accounted for by the smaller num-

ber of basal species in ecological networks. The amount of

information per basal species within a network is thus greater

than the amount of information per top species, leading to a

better classification of basal species. Interestingly, an asym-

metric influence of evolutionary history has often been found

in bipartite antagonistic networks, with phylogeny better

accounting for the composition of basal species subgroups

than for that of top species subgroups (Ives & Godfray 2006;

Vacher, Piou & Desprez-Loustau 2008; Krasnov et al. 2012;

Elias, Fontaine & Van Veen 2013). For instance, in a tree-

parasitic fungus network, a significant association between

species subgroups and phylogeny was found for tree species,

but not for parasite species (Vacher, Piou & Desprez-Loustau

2008). Similar results have also been obtained for a couple of

dozen mammal–flea networks. Closely related hosts tend to

occur in the same subgroups of highly interacting species,

whereas the distribution of parasite lineages between sub-

groups is rarely anything other than random (Krasnov et al.

2012). Ecological and evolutionary processes have been pro-

posed to account for this asymmetric pattern. For instance, it

has been hypothesized that exploitative competition shapes

antagonistic interactions more strongly than apparent compe-

tition (Krasnov et al. 2012; Elias, Fontaine & Van Veen

2013). Our results suggest that the observed pattern may also

be, at least partly, a methodological artefact, due to the less

accurate classification of antagonist species into subgroups.

Further studies are thus required to assess the true effect of

phylogeny on the compartmentalized structure of bipartite

antagonistic networks.

In conclusion, according to our results, ecologists should

favour the edge-betweenness algorithm (with the modularity

Table 1. Mean computer running time for the clustering of a single

intermediate ecological network (left) and 1000 intermediate ecological

networks (right)

1Network 1000Networks

Weighted Binary Weighted Binary

Mod 13 ms 11 ms 13 s 11 s

MCL1/10 31 ms 33 ms 31 s 33 s

MCL 32 ms 31 ms 32 s 31 s

NSC 83 ms 85 ms 1 min 23 s 1 min 25 s

ASC 90 ms 95 ms 1 min 30 s 1 min 35 s

EB 779 ms 31 ms 12 min 59 s 31 s

SBM 43 s 1 min 21 s 11 h 49 min 22 h 26 min

The computer running time is the time taken to execute the analysis on

a single-processor computer running only one job at a time. The clus-

tering methods are classified from the fastest to the slowest on the basis

of the results obtained for weighted networks. The abbreviations for

the clusteringmethods are the same as in Fig. 1.

Table 2. Advice concerning the best choice of clusteringmethod for bipartite ecological networks

Binary network Weighted network

Best clusteringmethod Edge-betweenness algorithm, with themodularity criterion

for selecting group number

Stochastic BlockModel, with the ICL criterion

for selecting group number

Second best clustering

method

Modularity maximizationmethod, implementedwith a

fast algorithm

Modularitymaximizationmethod, implementedwith a

fast algorithm

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution
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criterion for selecting group number) when they wish to

retrieve subgroups of highly interacting species from binary

bipartite networks (Table 2). For weighted bipartite networks,

they should prefer the stochastic block model (Table 2), which

accurately estimates the number of subgroups and retrieves

their composition effectively in this context. Unfortunately,

this method is slow, particularly for large networks. Modular-

ity maximization is a good alternative (Table 2), given that

recent developments have made it possible to analyse thou-

sands of ecological bipartite networks in a reasonable amount

of time. These three best clustering methods will have to be

compared in future studies to other existing methods that have

not been included in the present comparison. We provide the

code for simulating bipartite networks and clustering them

(https://gitlab.crans.org/leger/clustering_methods_comparison),

in order to facilitate futuremethodological comparisons.
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Fig. S1. Cumulative distribution of degrees in simulated networks for

(a) basal species and (b) top species.

Fig. S2. Frequency distribution of dependence in simulated networks

for (a) basal species and (b) top species.

Fig. S3. Frequency distribution of asymmetry values in simulated net-

works.

Fig. S4. Performance of the clustering methods for networks simulated

withmean values for ecological parameters, with themethods forced to

perform the clustering with the true number of subgroups. See Fig. 2

for legend details.

Fig. S5. Performance of the clustering methods for networks simulated

with mean values for ecological parameters. Modularity maximization

with a simulated annealing algorithm (ModG) was added to the com-

parison. See Figs 1 and 2 for legend details.
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Fig. S6. Effect of the variation of all network properties on the perfor-

mance of clustering methods in the case of weighted networks. See

Fig. 3 for legend details.

Fig. S7. Effect of the variation of all network properties on the perfor-

mance of the clustering methods for binary networks. See Fig. 3 for

legend details.

Table S1. List of real ecological bipartite networks used to choose the

parameter values for network simulation.

Table S2.Parameter value ranges used to simulate networks.

Appendix S1.Algorithmand parameters used to simulateweighted eco-

logical bipartite networks, and implementation details for the network

clusteringmethods.
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