
The University of Chicago

Constructing Random Matrices to Represent Real Ecosystems
Author(s): Alex James, Michael J. Plank, Axel G. Rossberg, Jonathan Beecham, Mark
Emmerson, Jonathan W. Pitchford
Source: The American Naturalist, Vol. 185, No. 5 (May 2015), pp. 680-692
Published by: The University of Chicago Press for The American Society of Naturalists
Stable URL: http://www.jstor.org/stable/10.1086/680496 .

Accessed: 24/04/2015 04:39

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press, The American Society of Naturalists, The University of Chicago are
collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist.

http://www.jstor.org 

This content downloaded from 134.206.126.5 on Fri, 24 Apr 2015 04:39:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/action/showPublisher?publisherCode=amsocnat
http://www.jstor.org/stable/10.1086/680496?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Constructing Random Matrices to Represent Real Ecosystems

Alex James,1,* Michael J. Plank,1 Axel G. Rossberg,2,3 Jonathan Beecham,2 Mark Emmerson,3

and Jonathan W. Pitchford4

1. Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand; and Te Pūnaha Matatini, New Zealand;
2. Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, United Kingdom; 3. School of Biological Sciences, Queens
University Belfast, Belfast, United Kingdom; 4. Departments of Biology and Mathematics, University of York, York, United Kingdom

Submitted June 18, 2014; Accepted December 10, 2014; Electronically published March 11, 2015

Online enhancements: appendixes.

abstract: Models of complex systems with n components typically
have order n2 parameters because each component can potentially
interact with every other. When it is impractical to measure these
parameters, one may choose random parameter values and study the
emergent statistical properties at the system level. Many influential
results in theoretical ecology have been derived from two key as-
sumptions: that species interact with random partners at random
intensities and that intraspecific competition is comparable between
species. Under these assumptions, community dynamics can be de-
scribed by a community matrix that is often amenable to mathemat-
ical analysis. We combine empirical data with mathematical theory
to show that both of these assumptions lead to results that must be
interpreted with caution. We examine 21 empirically derived com-
munity matrices constructed using three established, independent
methods. The empirically derived systems are more stable by orders
of magnitude than results from random matrices. This consistent dis-
parity is not explained by existing results on predator-prey interac-
tions. We investigate the key properties of empirical community ma-
trices that distinguish them from random matrices. We show that
network topology is less important than the relationship between
a species’ trophic position within the food web and its interaction
strengths. We identify key features of empirical networks that must
be preserved if random matrix models are to capture the features of
real ecosystems.

Keywords: community matrix, complexity, food web, interaction
strength, stability, predator-prey interaction.

Introduction

Interactions between species are central to the concept of
an ecosystem. They are, however, both expensive and tech-
nically challenging to measure empirically. It is natural,
therefore, that ecologists have sought to understand to what
extent these interactions can be thought of as random and,
furthermore, to understand and quantify the possible rela-
tionships between these interactions that best confer the

features of ecosystem stability, resilience, and dynamics ob-
served in nature. For these reasons, theories involving ran-
domly generated interactions between species have under-
pinned many influential ideas concerning the stability of
complex ecological networks (May 1972; Pimm and Lawton
1978; Yodzis 1981; Bastolla et al. 2009; Allesina and Tang
2012).
May (1972) famously showed that, under certain as-

sumptions, there is a limit to how “complex” a network eco-
system with a stable equilibrium can be. He then hypoth-
esized that this was relevant to the stability of ecological
networks. Stability, in this context, means that there is an
equilibrium in which all species in the network survive at
some positive density and that this equilibrium is robust to
sufficiently small perturbations in the species densities. Un-
der this definition, stability of the equilibrium is quantified
by the leading eigenvalue of the Jacobian matrix evalu-
ated at the equilibrium point, which describes the behavior
of the system close to equilibrium. Whether complex eco-
systems operate close to equilibrium is a matter of some
debate, and local stability is not the only way of quantify-
ing the resilience of an ecosystem to change (Grimm and
Wissel 1997; McCann 2000). Other measures include, for
example, permanence (Jansen 1987; Law and Blackford
1992), persistence (Bastolla et al. 2009; Thébault and Fon-
taine 2010; Gravel et al. 2011), and species-deletion stabil-
ity (Pimm 1980). Nevertheless, local stability is a necessary
condition for a persistent equilibrium and is a widely used
measure of ecosystem robustness (Thébault and Fontaine
2010; Allesina and Tang 2012; Staniczenko et al. 2013), and
we focus on local stability in this article.
The conclusions of May (1972) contradicted earlier ideas

that ecosystems with more species—and more interactions
among those species—are more likely to be stable (MacAr-
thur 1955; Elton 1958). In reality, highly complex ecological
networks—that is, networks with many species, many inter-
actions, and strong interactions—do exist (O’Gorman and
Emmerson 2010; Twomey et al. 2012), and empirical evi-
dence frequently points to a positive relationship between
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complexity and stability (Yodzis 1981; de Ruiter et al. 1995;
McCann 2000; Gravel et al. 2011). Various theoretical ex-
planations for this apparent “stability despite complexity”
have been proposed, including a skew in the interaction
strength distribution toward weak links (McCann et al.
1998; Emmerson and Yearsley 2004), weak links in long
loops (Neutel et al. 2002), a pyramidal distribution of bio-
mass across trophic levels (Neutel et al. 2007), the stabilizing
effect of predator-prey interactions (de Angelis 1975; Alle-
sina and Pascual 2008), and spatial colonization-extinction
dynamics (Gravel et al. 2011). Interaction strengths are
widely accepted to be very important, but the consequences
for theoretical structure-stability relationships are not well
understood.

Our aim is to explore the relative importance of some
of these hypotheses for stability despite complexity and to
investigate the consequences of two key assumptions we
identify in random matrix models. To do this, we use 21
networks constructed from empirical data via three inde-
pendent methods. A combination of numerical simulations,
statistical analysis, and algebraic calculations is used to as-
sess the important features of these empirically derived net-
works within the wider class of random models that aim to
describe them.

The first assumption of May (1972) concerns the inter-
actions between species. Species were assumed to interact
with one another randomly, so that the architecture of the
network—that is, which elements of the community ma-
trix are nonzero—was described by an Erdös-Rényi ran-
dom graph (Erdös and Rényi 1960). The strengths assigned
to species interactions—that is, the weights of the nonzero
network links—were normally distributed. To test the as-
sumption of randomly generated interactions and inten-
sities, we quantify the stability of the empirically derived
food webs and compare it to the stability predicted by a ran-
dom matrix. We use a suite of randomization algorithms
with different assumptions about food web structure and
interaction strength distributions. In almost all cases, we
find that each empirically derived food web is substantially
more stable than the corresponding randomized food webs.
This shows that the assumptions built into the random
matrices bias the results toward instability.

The second assumption concerns the intraspecific com-
petition of each species. May (1972) assumed that all spe-
cies had the same timescale for self-regulation at equilib-
rium, resulting in equal elements on the diagonal of the
community matrix.We use simple dynamical systems anal-
ysis to show that normalizing the self-regulation terms in
this way leads to a model that is not representative of real
communities. In ecological terms, this requires a highly re-
strictive and untested assumption about trade-offs between
species’ intrinsic growth rates and their interactions with
other species. We investigate the consequences of this as-

sumption by exploring the effect on matrix stability of dif-
ferent methods for estimating the self-regulation terms. In
contrast to the random-interactions assumption described
above, the consequence of assuming equal self-regulation
is a strong bias toward stability.

Random Matrix Models

We assume that a given ecosystem comprises n species
and that the population of each species is represented by
its biomass density xi, where ip 1, ::: , n. The dynamics of
the system are then represented by a general system of
differential equations,

dx
dt

p f(x), (1)

where xp (x1, ::: , xn) and f is a function that depends on
x. We define the Jacobian matrix in its mathematical sense
to mean the matrix describing the linearized dynamics at
any given location (Wiggins 2003), that is,

Jij p
∂fi
∂xj

. (2)

When this matrix is evaluated at an equilibrium point of
the system—that is, at a point x� such that f(x�)p 0—it is
referred to as a community matrix. This is closely related
to but distinct from the matrix of coefficients of species
interaction rates used to parameterize, for example, a Lotka-
Volterra model (see “RandomMatrices and Dynamic Mod-
els”). Local stability of an equilibrium is determined by the
real part of the leading eigenvalue (i.e., the eigenvalue with
the largest real part) of its associated community matrix:
if that real part is negative, then the equilibrium is locally
stable. Although stability is a binary on/off property, for
stable equilibriums we use the term “less stable” to mean
farther from stability (i.e., having a leading eigenvalue with
larger real part), and conversely for the term “more stable.”
May (1972) modeled ecological networks of S species

using random S # S community matrices, A. Each off-
diagonal element aij of A is set to 0 with probability 1 2 C
and drawn from a distribution with mean 0 and variance
j2 with probability C. The element aij represents the effect
that a unit of species j has on the rate of increase of spe-
cies i at equilibrium: if aij is 0, species j has no direct ef-
fect on species i. The parameter C is referred to as the
connectance. May’s critical insight was to use Wigner’s
semicircle theorem and the circular law of Metha (1967) to
show that the real parts of the eigenvalues of this random
matrix must all be less than

d0 p j
ffiffiffiffiffiffi
SC

p
. (3)

The variable d0 is commonly referred to as “complexity”
and represents the relative strength of intraspecific com-
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petition needed to stabilize a given food web. If the diag-
onal elements aii, representing the effects of intraspecific
competition, are all set to2d0, then all of the eigenvalues of
the community matrix will have negative real parts, and the
equilibrium will be stable (see “Random Matrices and Dy-
namic Models”). A matrix with a high value of d0 requires
strong intraspecific competition to stabilize it. May (1972)
used equation (3) to conclude that high connectance (large
C), a large number of species (large S), or strong interac-
tions (high j) in food webs lead to instability.

These results were generalized by Allesina and Tang
(2012) to community matrices with a more specific struc-
ture in the interaction terms aij. This included predator-
prey systems in which interactions are beneficial to one
species and detrimental to the other (aij and aji have op-
posite signs). Tang et al. (2014) extended the stability con-
dition to account for pairwise correlation between aij and
aji. They showed that, with high probability, the leading ei-
genvalue of the community matrix will have real part less
than

d0 p
ffiffiffiffiffiffi
SV

p
(11 r)2 E, (4)

where r is the correlation between aij and aji and E and V
are the mean and variance, respectively, of the off-diagonal
elements (including zeros). This result, with its revised defi-
nition of complexity, indicates that (under the assumptions
of random network topology) the negative pairwise corre-
lation (r ! 0) one might expect to find in a predator-prey
system should be a stabilizing factor.

The Relationship between Random
Matrices and Real Food Webs

There are numerous methods of constructing a commu-
nity matrix from data, many of which rely on body size
data, allometric scaling relationships, bioenergetic models,
and/or interaction strength data. Brose et al. (2006), Otto
et al. (2007), andWoodward et al. (2005a) explored the con-
sequences of some of these assumptions and highlighted
their importance in determining stability. We use three in-
dependent, established approaches, each relying on differ-
ent sets of assumptions, to construct community matrices
from empirical data from 21 food webs with distinct to-
pologies. These consist of (1) eight successional food webs
and four soil food webs (Neutel et al. 2002) constructed
using the biomass fluxmethod ofMoore et al. (1996), (2) six
marine ecosystems modeled using Ecopath with Ecosim
(EwE; Christensen and Pauly 1992), and (3) three fresh-
water/estuarine ecosystems constructed using the predator-
prey mass ratio (PPMR) model of Emmerson and Raffaelli
(2004). See appendix A (apps. A–C are available online) for

details. The soil and freshwater systems are all food webs
consisting only of predator-prey interactions; the marine
systems contain a mixture of interaction types.
We set the diagonal elements of each empirically de-

rived matrix to 0 and calculate the real part l0 of the lead-
ing eigenvalue as a measure of how far that matrix is from
stability (May 1972; Neutel et al. 2002; Allesina and Tang
2012). Figure 1A plots l0 against complexity as defined by
equation (3). Complexity is inversely correlated with sta-
bility but only weakly, and it predicts stability within two
orders of magnitude at best. Figure 1B repeats the plot
using the modified stability condition incorporating pair-
wise correlation in equation (4) (Tang et al. 2014). The
only matrices for which equation (4) provides a substan-
tially better prediction are the food webs constructed with
the PPMR model (circles), which result in a strong neg-
ative pairwise correlation (Emmerson and Raffaelli 2004).
The construction methods used in the other networks (see
app. A) result in much weaker pairwise correlation, and
accounting for it using equation (4) has almost no effect.
Figure 1 raises an important question: given that com-

plexity alone cannot usefully predict stability in these em-
pirically derived networks, which other network properties
can? We test the hypothesis that randomly generated com-
munity matrices capture the essential properties of a real
food web by comparing suites of randomly generated ma-
trices to the empirically derived matrices, where each suite
is defined by a set of ecologically motivated rules. We seek
algorithms capable of emulating key properties of the em-
pirical networks.
For each empirically derived matrix, we generate suites

of 200 random matrices for each of 12 randomization al-
gorithms and calculate the value of l0 for each randomi-
zation. If a particular network property is fundamental to
stability, then alterations to the network that preserve this
property should only minimally affect stability. Figure 2
shows the results of this process for one empirically de-
rived community matrix. Every randomized matrix has the
same size and connectance as the empirically derived ma-
trix. The vertical line shows the real part of the leading
eigenvalue of the empirically derived matrix, l0 p 0.1. The
histograms show the distribution of l0 generated by 200 re-
alizations of each randomization algorithm.
Figure 2A shows the distribution for the random matrix

proposed by May (1972): the network topology is Erdös-
Rényi, and the nonzero entries are drawn from a normal
distribution with mean 0 and the same variance as in the
original matrix. The difference is striking: in the random
matrices, the strength of intraspecific competition needed
to stabilize the food web, l0, is between 100 and 10,000
times greater than in the original matrix. Figure 2B shows
the distribution of l0 for a network as in figure 2A but with
the same pairwise sign structure (i.e., the same number of
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predator-prey and competitive interactions) as the origi-
nal matrix. These interaction pairs are randomly placed
in the matrix, and the positive and negative elements are

randomly and independently generated from half-normal
distributions with the same mean as in the original ma-
trix. This approach is similar to that of Pimm and Lawton
(1978) and Allesina and Tang (2012). This randomization
still gives values of l0 approximately 100 times larger than
in the original matrix. Figure 2C uses the same algorithm
as figure 2B to generate the interaction strengths but pre-
serves the empirical network topology rather than gener-
ating a topology at random. This is similar to an algorithm
used by Jacquet et al. (2013). The difference in intraspe-
cific interaction strength needed to stabilize the webs, l0,
between the randomizations and the empirically derived
matrix is still large.
The preceding randomization algorithms all randomly

generate nonzero elements of the community matrix from
normal distributions and give values of l0 that are consis-
tently more than 100 times greater than in the original ma-
trix. Given this failure of randomly generated elements to
capture the properties of the empirically derived matrices,
we test a second category of algorithms that permute the
actual matrix elements rather than randomly generating
new elements. Figure 2E shows the distribution of l0 from
an algorithm that moves existing pairs of interactions—
that is, that destroys the topology of the original network—
but holds (aij, aji) pairs together and preserves pairwise cor-
relation r. This algorithm gives a marked improvement
over figure 2A–2C in retaining the original matrix proper-
ties: for this network, the value of l0 for the empirically de-
rived matrix is now within the interquartile range of the
distribution of l0 under the randomization. In figure 2F,
pairs of elements (aij, aji) are swapped with other existing
pairs of elements, thus preserving the topology of the net-
work. This additional constraint does very little to bring the
stability of randomized matrices closer to that of the em-
pirically derived matrices on which they are based. Finally,
figure 2G applies a permutation of the positive elements
and an independent permutation of the negative elements.
This preserves the original topology and sign structure but
destroys any pairwise correlation. Again, this modification
gives very little change relative to algorithms E and F. Al-
gorithms F and G are similar to those used by Yodzis (1981),
de Ruiter et al. (1995), and Neutel et al. (2002).
Algorithms E–G, which use the original matrix ele-

ments rather than replacing them with random numbers,
show a marked improvement in preserving the stability of
the original matrix. This shows that the methods used to
estimate the community matrices produce off-diagonal ele-
ments that yield relatively stable communities even if these
elements are permuted and the topological structure of the
original empirical networks is destroyed. The observation
that there is little difference between E, F, and G shows
that network topology (preserved in F and G) and pairwise
correlation (preserved in E and F) are less important in

100 10510−4
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102

l 0

r 2 = 0.2

A

100 10510−4

10−2

100

102
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σ SC

SV  (1+ρ) − E

Figure 1: Stability-complexity relationship in 21 empirically derived
food webs. The real part l0 of the leading eigenvalue against com-
plexity d0 is defined by equation (3) (A) or (4) (B). S is the number
of species; C is the connectance; j 2 is the variance of nonzero off-
diagonal elements; E and V are the mean and variance, respectively,
of all off-diagonal elements; and r is the correlation coefficient be-
tween aij and aji pairs. Diagonal elements are set to 0. The dashed
lines show the line l0 p d0. Symbols indicate the method used to
construct the community matrix: biomass flux p stars (successional
webs) or triangles (soil webs); Ecopath with Ecosim p squares;
predator-prey mass ratio p circles. Although complexity is corre-
lated with stability, the relationship is weak and of little practical rel-
evance. Many of the empirically derived networks are many orders of
magnitude more stable than predicted by the criteria in equations (3)
and (4).
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this particular community than the distribution of matrix
elements.

We repeated the above-described analysis using all 21
empirically derived community matrices (see app. A). We
define the error for a random matrix to be log10(lrand=lemp),
where lrand and lemp are the values of l0 in the randomized
and empirically derived matrix, respectively. Figure 3 shows
the mean and the 5th to 95th percentile range of the error
for each randomization algorithm, applied to each of the
21 food webs. When these intervals exclude 0, the value of
l0 for the empirically derived matrix lies in the tail of the
distribution of l0 under the randomization scheme, show-
ing that the scheme does not capture the relevant prop-
erties of the original matrix. The results in figure 3 confirm
that the patterns seen in figure 2 for a single successional
soil food web extend across a range of food webs. For the
randomization algorithms that use normally distributed ele-
ments (A–C), the predictions are particularly biased, show-
ing that the random matrices are much farther from stabil-
ity than the empirically derived matrices. The distributions
of l0 for these algorithms are relatively narrow, showing
the similarity of all matrices generated by these algorithms.
Importantly, all of the randomization algorithms tested are
consistently biased toward instability (error 1 0) for the
majority of matrices.

As seen in figure 2, using the same distribution of ele-
ments (fig. 3E–3G) as in the empirically derived matrix
helps to stabilize the randomized networks. Preserving ei-
ther the empirical network topology (fig. 3F, 3G) or the
pairwise correlation (fig. 3E, 3F) does not further improve
the results for most networks. The notable exceptions to
this are the food webs constructed with the PPMR model
(circles), which have strong pairwise correlation and there-
fore respond well to algorithms that preserve this feature.
This is consistent with the results of Tang et al. (2014), who
also used the PPMR model in the construction methods.

The structure of predator-prey networks has been found
to play an important role in stability (Levins 1979; Dam-
bacher et al. 2003; Allesina and Tang 2012). A pyramidal
biomass pattern leads to strong row structure in commu-
nity matrices: the variance of elements within a row is much
less than the variance of elements between rows (Jacquet
et al. 2013). This is borne out by the definition of an ele-
ment of the community matrix: aij is the effect of a unit of
species j on the rate of increase of species i at equilibrium.
The rate of increase of species i is typically proportional to
its abundance (see “Random Matrices and Dynamic Mod-
els”), meaning that the magnitude of elements in row i of
the community matrix should be strongly correlated with
the equilibrium abundance of species i.

To test the role played by row structure, we designed an
algorithm that preserves the average magnitude of the ele-
ments in each row of the matrix. The positive/negative ele-

ments in each row are generated from normal distributions
with the same means as in the original matrix (figs. 2D,
3D). To investigate the role played by interaction strength
distribution in tandem with row structure, we designed a
second algorithm that moves elements of the original ma-
trix within rows in the lower triangle and moves the cor-
responding elements within columns in the upper trian-
gle, holding pairs of elements (aij, aji) together (figs. 2H,
3H; see app. B for details). Both of these algorithms de-
stroy the original network topology but preserve stability
remarkably well in most food webs. Using randomly gen-
erated elements (fig. 3D) destabilizes community matrices
constructed by means of the PPMR model (circles) because
it destroys the strong pairwise correlation in these matrices;
the algorithm that preserves pairwise correlation (fig. 3H)
preserves stability much better for these matrices. For the
other food webs, there is little difference between fig. 3D and
3H, indicating that the row structure itself is more impor-
tant than the precise distribution of interaction strengths.
Cycles of length three (interaction chains from species

i to species j to species k and back to species i), which
typically arise from omnivorous interactions in food webs,
can also affect stability. Neutel et al. (2002) showed that
strong top-down effects in omnivorous relations tend to
be spread across different cycles, meaning that the maxi-
mum cycle weight (where cycle weight is defined as the
geometric mean of the strengths of the interactions in the
cycle) tends to be lower in a real food web than in a ran-
domized community matrix. Since cycle weights are closely
linked to eigenvalues (Hofbauer and Sigmund 1998), they
proposed that this helps make food webs stable. To test
the role played by cycles in our empirically derived matri-
ces, we designed simple algorithms that only change links
that are not in a cycle of length three, either destroying or
preserving the original network topology. Both algorithms
preserve the number of cycles of length three, their weights,
and the pairwise correlation of elements (see app. B for
details). These are severe constraints: in most networks,
only 25%–35% of links are changed by these algorithms. To
enable a fair comparison with randomization algorithms
that do not preserve cycles of length three, we devised cor-
responding algorithms that change the same number of
links as the cycle-preserving algorithms but choose the links
at random rather than because of their involvement in a
cycle of length three. For the topology-changing algorithm
(fig. 4A), there is little difference in the mean error between
the algorithm that preserves cycles of length three and the
algorithm that does not. For the topology-preserving algo-
rithm (fig. 4B), preserving cycles of length three reduces
error (see fig. B2 for the error distributions for each algo-
rithm; figs. B1, B2, and C1 are available online). This shows
that stability is promoted by the way in which cycles are
positioned within the overall network topology (which is

Random Matrices and Real Ecosystems 685

This content downloaded from 134.206.126.5 on Fri, 24 Apr 2015 04:39:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


−1012345

Error

(A
) T

op
: R

an
do

m
   

 M
ag

: R
an

do
m

(B
) T

op
: R

an
do

m
   

 M
ag

: R
an

do
m

 (s
ig

ne
d)

(C
) T

op
: E

m
pi

ric
al

   
 M

ag
: R

an
do

m
(D

) T
op

: R
an

do
m

   
 M

ag
: R

an
do

m
 (r

ow
 s

tru
ct

ur
e)

0.
5

1
1.

5
2

−1012345

lo
g 1

0(
S)

Error

(E
) T

op
: R

an
do

m
   

 M
ag

: E
m

pi
ric

al
 (p

ai
re

d)

0.
5

1
1.

5
2

(F
) T

op
: E

m
pi

ric
al

   
 M

ag
: E

m
pi

ric
al

 (p
ai

re
d)

0.
5

1
1.

5
2

(G
) T

op
: E

m
pi

ric
al

   
 M

ag
: E

m
pi

ric
al

0.
5

1
1.

5
2

(H
) T

op
: R

an
do

m
   

 M
ag

: E
m

pi
ric

al
 (r

ow
 s

tru
ct

ur
e)

lo
g 1

0(
S)

lo
g 1

0(
S)

lo
g 1

0(
S)

Fi
gu

re
3:

D
if
fe
re
n
ce
s
in

st
ab
ili
ty
be
tw
ee
n
em

pi
ri
ca
lly

de
ri
ve
d
an
d
ra
n
do

m
iz
ed

m
at
ri
ce
s
ac
ro
ss
21

co
m
m
un

it
ie
s
an
d
th
re
e
co
n
st
ru
ct
io
n
m
et
ho

ds
.T

he
di
st
ri
bu

ti
on

of
er
ro
r
p

lo
g 1

0
(l
ra
n
d
/l
em

p
)

fo
r
th
e
sa
m
e
si
x
ra
n
do

m
iz
at
io
n
al
go
ri
th
m
s
(A

–H
)
is
as

in
fi
gu
re

2,
ch
an
gi
ng

ei
th
er

or
bo
th

of
ne
tw

or
k
to
po

lo
gy

(T
op

)
an
d
m
ag
ni
tu
de

of
in
te
ra
ct
io
n
st
re
n
gt
hs

(M
ag
).
T
he

fo
od

w
eb
s
ar
e

pl
ot
te
d
ag
ai
n
st
th
e
nu

m
be
r
of

sp
ec
ie
s
S
in

th
e
w
eb

on
th
e
ho

ri
zo
nt
al
ax
is
.S
ee

ap
pe
n
di
x
B
(a
va
ila
bl
e
on

lin
e)

fo
r
de
ta
ils

on
th
e
ra
n
do

m
iz
at
io
n
al
go
ri
th
m
s.
Sy
m
bo

ls
in
di
ca
te
th
e
m
et
ho

d
us
ed

to
co
n
st
ru
ct

th
e
co
m
m
un

it
y
m
at
ri
x:

bi
om

as
s
fl
ux

p
st
ar
s
(s
uc
ce
ss
io
n
al

w
eb
s)

or
tr
ia
n
gl
es

(s
oi
l
w
eb
s)
;
E
co
pa
th

w
it
h
E
co
si
m

p
sq
ua
re
s;
pr
ed
at
or
-p
re
y
m
as
s
ra
ti
o
p

ci
rc
le
s.

This content downloaded from 134.206.126.5 on Fri, 24 Apr 2015 04:39:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


preserved only in fig. 4B) rather than simply by their weights
(which are preserved in both fig. 4A and fig. 4B).
Of the randomization algorithms investigated, the cycle-

preserving, topology-preserving algorithm (fig. 4B) is least
biased but is highly restrictive, requiring information about
the network topology, cycle structure, and distribution of
matrix elements. In contrast, the algorithm shown in fig-
ure 3D requires only the means of the community matrix
elements for each species and has purely random topology.
This corresponds to May-type assumptions combined with
realistic sign structure (Allesina and Tang 2012) and equi-
librium biomasses for each species.

Random Matrices and Dynamic Models

The results discussed in “The Relationship between Ran-
dom Matrices and Real Food Webs” use the properties of
general community matrices to indicate how stability may
arise in complex networks. However, to truly understand
the ecological implications of the results for randommatrix
models, it is helpful to consider a specific dynamic model
rather than just a community matrix linearized around a
hypothetical equilibrium point.
Most random matrix models, including those consid-

ered in “The Relationship between Random Matrices and
Real Food Webs,” assume that all diagonal elements of the
community matrix are the same, that is, aii p 2d for some
d 1 0. This was justified by May (1972) with the state-
ment “to set a time-scale, these damping times are all cho-
sen to be unity” (i.e., d p 1). However, introducing the
variability into the diagonal elements without changing
their mean tends to increase the leading eigenvalue, and
this effect cannot be removed by a rescaling of variables
(Haydon 1994). Furthermore, the correspondence of diag-
onal elements with intraspecific effects is particular to sim-
ple generalized Lotka-Volterra models. More general mod-
els—for example, those with type 2 functional responses
or other nonlinear interaction terms—do not have this
property and generate diagonal elements that depend on
interspecific interactions (de Angelis 1975; Haydon 1994).
Therefore, some variation in the diagonal elements of the
community matrix should be expected. The assumption of
identical diagonal elements is crucial yet ecologically un-
justified. In this section, we show that a dynamic model
that is constrained to have equal diagonal elements in the
community matrix behaves fundamentally differently from
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Figure 4: Stability is enhanced by the position of cycles within the
overall network topology. The mean error p log10(lrand/lemp) of ran-
domization algorithms that preserve cycles of length three is plotted
against the mean error of corresponding algorithms that change the
same number of network links but do not preserve cycles. Randomi-
zations in A and B destroy and preserve, respectively, the original
network topology. See appendix B (available online) for details on
the randomization algorithms. Symbols indicate the method used to

construct the community matrix: biomass flux p stars (successional
webs) or triangles (soil webs); predator-prey mass ratio p circles.
Community matrices for which !90% of randomizations produce
distinct matrices are not shown; this includes all of the Ecopath with
Ecosim webs.
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an unconstrainedmodel and cannot exhibit one of themost
common mechanisms for species loss.

Although the results of May (1972) did not rely on a
specific dynamic model, the simplest model that gener-
ates a community matrix of the type considered by May
(1972) and Allesina and Tang (2012) is a generalized Lotka-
Volterra model,

dxi
dt

p xi

 
ri 1 o

S

jp1
qij xj

!
, (5)

where xi is the biomass density of species i, ri is its intrin-
sic growth rate, and qij are referred to as Lotka-Volterra
coefficients. This model assumes that species interactions
can be described by “mass action” (type 1) terms. The co-
efficients qij correspond to the dynamic index measure of
interaction strength sensu Berlow et al. (1999) and can be
estimated empirically from predator-prey mesocosms (Em-
merson and Raffaelli 2004). The diagonal element qii rep-
resents the strength of intraspecific competition, or self-
limitation, for species i and must be nonpositive to prevent
boundless growth of species i in isolation. Although equa-
tion (5) is the simplest model of an ecological network, the
conclusions of this section extend to more general models
(see app. C).

The community matrix for equation (5) has elements
aij p qijx�

i . This helps to explain the row weight patterns
seen in the empirically derived matrices in “The Relation-
ship between Random Matrices and Real Food Webs”: the
elements in row i of the community matrix are proportional
to the equilibrium biomass density x�

i of species i. This em-
phasizes that the community matrix element does not rep-
resent the direct effect of species j on species i (which is qij)
and that aii does not represent the strength of intraspecific
competition (which is qii).

The system in equation (5) undergoes a transcritical bi-
furcation whenever one of the equilibrium abundances x�

i

becomes negative. During this transition, the abundance of
species i gradually declines to 0, and the community moves
smoothly to a different equilibrium in which species i is ab-
sent. Instability and species loss are thus associated with the
gradual decline of one species to zero density.

At a transcritical bifurcation, the equilibrium abundance
x�
i for species i is 0, and so the diagonal element of the
community matrix for species i, aii p qiix�

i , is also 0. Re-
quiring all of the diagonal elements of the community ma-
trix to equal 2d ! 0 prevents this type of transition from
occurring. It also imposes a constraint on the intrinsic
growth rates ri (see app. C):

ri p do
S

jp1

qij
qjj
. (6)

This constraint means that the equilibrium biomasses are
x�
i p 2 d=qii, which are always all positive since d 1 0 and
qii ! 0. Therefore, the only way in which a species can be-
come extinct is via a degenerate bifurcation that makes the
positive equilibrium become unstable, causing the system to
move suddenly to a different equilibrium point (see app. C).
Although sudden changes in community composition, such
as regime shifts (Moellmann and Diekmann 2012), are cer-
tainly possible, a model that precludes species loss via grad-
ual decline is unable to capture one of the simplest and most
common mechanisms for change in ecological communi-
ties (Rossberg 2013). Hopf bifurcations, which lead to os-
cillatory dynamics, are also possible but are not directly as-
sociated with species loss.
Equation (6) can be interpreted as representing an eco-

logical trade-off. A species that receives a net benefit from
interactions with other species must compensate by having
a negative intrinsic growth rate. For example, a top pred-
ator benefits from consuming prey (qij ≥ 0) but will die out
in the absence of prey (ri ! 0). Conversely, a species that is
negatively impacted from interactions with other species
(e.g., a basal resource or a species that competes with other
species) must compensate by having a positive intrinsic
growth rate. Although the idea that such trade-offs may
operate in specific ecological circumstances is easy to ar-
gue, it is implausible that the intrinsic growth rates will
be precisely tuned to satisfy equation (6). Any slight devi-
ation from equation (6) results in a shift in model behavior,
meaning that the assumption of equal diagonal elements
makes the model structurally unstable.
Allesina and Tang (2012) argued that, in the limit as

S → ∞, variation among diagonal elements has a negli-
gible effect on the leading eigenvalue compared with the
effect of the off-diagonal elements. However, d0 scales as
S1/2. When scaling diagonal elements as S1/2 and keeping
the coefficient of variation of the diagonal elements fixed,
diagonal variance increases with network size. As a result,
diagonal variance is not necessarily negligible for stability
considerations, even as S → ∞. To quantify the effect of
variability in the diagonal elements of the 21 empirically
derived community matrices, we added variability in one
of two ways: first using randomly generated diagonal ele-
ments with the same variance as the off-diagonal elements,
and second using the diagonal elements estimated from
the empirical food web data. To enable a meaningful quan-
titative comparison with the zero-diagonal case, the diago-
nal elements were shifted so that their mean was 0.
We compared the real part of the leading eigenvalue of

the matrix with diagonal variability to that of the matrix
with diagonal elements set to 0 (l0; fig. 5). For all 21 food
webs, using randomly generated diagonal elements (fig. 5A)
gives a leading eigenvalue with substantially larger real part
than using equal diagonal elements. Using the empirically
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derived diagonal elements also gives a leading eigenvalue
with larger real part in the majority of food webs (fig. 5B).
For one of the three community matrix construction meth-
ods (used for the soil food webs; stars/triangles), the em-
pirically derived diagonal elements dominate the matrix
so strongly that all of the matrices have approximately
the same leading eigenvalue when they are included. This
shows that the standard assumption of equal diagonal el-
ements consistently gives predictions that overestimate the
stability of the equilibrium.

Discussion

In the absence of detailed ecological data on species in-
teractions, the use of random matrix models to make pre-
dictions about the relationship between ecosystem com-
plexity and stability is widespread (Thébault and Fontaine
2010; Gravel et al. 2011; Allesina and Tang 2012). We have
shown that using randomly generated network topology
and interaction strengths can lead to predictions about lo-
cal stability that differ by orders of magnitude from those
of empirically derived models.
Various characteristics of real food webs—for example,

the sign structure associated with predator-prey interac-
tions (Allesina and Pascual 2008; Jacquet et al. 2013), the
network topology (Haydon 2000; Tylianakis et al. 2010),
and the distribution (McCann et al. 1998; Emmerson and
Raffaelli 2004; Jacquet et al. 2013) and relative position-
ing (Yodzis 1981; de Ruiter et al. 1995; Neutel et al. 2002)
of interaction strengths—have been suggested to have sta-
bilizing influences. Our results show that including such
characteristics in models can increase stability, but this is
not always the case, even for larger networks where one
would expect predictions based on random matrices to give
the best results.
Measuring species interaction coefficients directly in

complex food webs is impossible. The models themselves
are necessarily simplifications of the real ecology, ignoring,
for example, details of age and size structure. They may also
amalgamate species into perceived functional groups, which
reduces the apparent species richness. Further assump-
tions and simplifications are necessary to convert empiri-
cal data into estimated community matrices. One of the
strengths of our study is that the empirical matrices origi-
nate from three independently established sets of model-
ing assumptions: the biomass flux model (Moore et al.
1996), EwE (Christensen and Pauly 1992), and the PPMR
model (Emmerson and Raffaelli 2004). None of these ap-
proaches is “correct,” and each has arisen from ecological
and data-driven constraints specific to the systems under
study. Nevertheless, the resulting community matrices rep-
resent our best estimates of ecological reality. Where con-
sistent patterns emerge from our analysis of empirical net-
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Figure 5: Adding variability to the diagonals of empirically derived
community matrices decreases stability by orders of magnitude. The
real part of the leading eigenvalue, l0, of the matrix with diagonal
elements is set to 0 against lvar, the real part of the leading eigenvalue
of the matrix with randomly generated diagonal elements with the
same variance as the off-diagonals (A); and lemp, the real part of the
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for the diagonal elements (B). For each matrix with variable diagonal
elements, a constant was added to all of the diagonal elements so
that their sum was 0. Symbols indicate the method used to construct
the community matrix: biomass flux p stars (successional webs) or
triangles (soil webs); Ecopath with Ecosim p squares; predator-prey
mass ratio p circles.
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works derived in different ways, this provides evidence that
these ecosystems contain structure that is not captured by
simple random matrix models.

Our study shows that network topology may be less im-
portant for community stability than widely thought. For
example, Tylianakis et al. (2010) summarized the attri-
butes of network topology thought to confer stability. Our
results in figure 3C, 3F, and 3G show that it is possible to
have two networks with identical topology but with key
properties that vary by up to four orders of magnitude.
Conversely, our results in figure 3D show that a random
network topology with a particular organization of inter-
action strengths can come closer to empirical data. These
results do not imply that topology has no effect, but they
do show that it is less important than the distribution of
interaction strengths.

We designed new randomization methods to quantify
the role played by two important features of real ecological
networks—namely, cycles of length three and row struc-
ture in the community matrix—in determining stability.
We have shown that randomizations that preserve either
of these properties better reflect the stability of the empiri-
cally derived network, although for cycles of length three
the results are less marked than for row structure. That
each of these properties involves a combination of net-
work topology and the sizes of the community matrix ele-
ments emphasizes our finding that results based on ran-
domizations that ignore or make unjustified assumptions
about either of these features do not usefully reflect eco-
logical reality.

Previous studies have focused on different properties of
community matrices. Neutel et al. (2007) saw a correlation
between cycle weights and stability in data from soil food
webs; Jacquet et al. (2013) found that removing trophic
structure in community matrices from EwE models ad-
versely affected stability; and Tang et al. (2014) highlighted
the role played by pairwise correlation in community ma-
trices constructed using allometric scaling laws based on
body mass (Brose et al. 2006; Reuman et al. 2009; Pawar
et al. 2012). Our study unifies these seemingly disparate
findings by including community matrices constructed us-
ing each of these three methods and showing that differ-
ent factors are more important for stability in these differ-
ent types of community. For instance, pairwise correlation
is important in communities where it is strong, but other
factors—most notably row structure—dominate in commu-
nities where it is weaker.

On the basis of empirical and theoretical consider-
ations, Rossberg (2013) argued that transcritical bifurca-
tions involving gradual decline of a species to zero density
are the dominant form of loss of local stability in ecologi-
cal communities. Community matrices where the diago-
nal elements are assumed to be equal prevent this type of

change from happening and cannot, therefore, character-
ize the main type of instability that leads to change in
community structure. The assumption of May (1972) that
variations in the strength of intraspecific competition are
unimportant is one that has been largely neglected (see,
however, de Angelis 1975; Haydon 1994, 2000; de Ruiter
et al. 1995; Neutel et al. 2002). The effect of this assump-
tion is at least as prominent as the assumptions concern-
ing off-diagonal community elements.
Technical detail and exhaustive testing are unavoid-

able ingredients in the preceding analysis, but a clear and
practical biological message emerges. Although there is a
relationship between stability and complexity in ecologi-
cal communities, the predictive power of this relationship
is weak. Honest and seemingly pragmatic attempts to re-
place ignorance of ecological detail with random numbers,
whether these relate to network structure or to interactions
between species, must be treated with extreme caution. De-
spite the limitations explained here in the context of local
stability, random matrix models may be useful in the con-
text of more general coexistence conditions, where they can
lead to quantitative predictions of community structure in
good agreement with observations (Meszéna et al. 2006;
Rossberg 2013).
On a further constructive note, we argue that using

explicit dynamic models to describe ecological networks is
preferable to directly assigning elements to a community
matrix without reference to the underlying population dy-
namics. Parameterizing a dynamic model requires addi-
tional data—for example, species’ intrinsic growth rates or
equilibrium biomass densities—as well as estimates of in-
teraction strengths. Collecting these data is not always prac-
tical. Nevertheless, estimating them by means of established
models (de Ruiter et al. 1995; Emmerson and Raffaelli 2004;
Datta et al. 2010) or investigating the effects of introducing
variability in them is preferable to simply assuming that
they satisfy an arbitrary set of mathematical constraints.
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Appendix A from A. James et al., “Constructing Random Matrices
to Represent Real Ecosystems”
(Am. Nat., vol. 185, no. 5, p. 000)

Empirically Derived Community Matrices

The 21 empirically derived community matrices are available in electronic form. This section describes the methods used
to obtain these data for each class of food web studied.

Biomass Flux Method

Eight successional soil food webs and four soil food webs were supplied by Anje-Margriet Neutel from the data
published in de Ruiter et al. (1993, 1995), Moore et al. (1993, 1996), and Neutel et al. (2002). The elements of the
community matrix were derived from a generalized Lotka-Volterra-type model of the same form as equation (5) at
equilibrium. For primary producers, ri 1 0 was the intrinsic rate of increase per year. For consumers, ri ! 0 was the
nonpredatory death rate per year. For a species i that is consumed by species j, the Lotka-Volterra coefficient qij was
set equal to the negative of the consumption coefficient (in units of g21 m2 yr21) cij; the Lotka-Volterra coefficient qji was
set equal to the assimilation efficiency of species j times the production efficiency of species j times the consumption
coefficient cij. Species were aggregated into functional groups of species with similar food sources. Intrinsic birth and
death rates and efficiencies were estimated from microcosm studies. Trophic interactions among taxa were established by
direct observation or gut content analysis (Moore et al. 1996). Consumption coefficients were estimated from the
measured biomass flux from prey to predator (Moore et al. 1993). The original data included a row and a column
corresponding to detritus; these were removed for this analysis.

In the eight successional food webs, the average number of species was 12 (range, 7–15), mean connectance was
0.29 (range, 0.28–0.34), and average pairwise correlation r (i.e., correlation between aij and aji) was20.062 (range,20.02
to 20.13). In the four soil food webs, the average number of species was 17 (range, 16–18), mean connectance was
0.27 (range, 0.23–0.31) and average pairwise correlation was 20.055 (range, 20.047 to 20.059). All of the networks
were strictly predator-prey (i.e., aij and aji either had opposite signs or were both 0).

Predator-Prey Mass Ratio Method

Data were obtained for the average adult body mass wi of species i and which species predated on which other species
for the well-documented Ythan Estuary (Emmerson and Raffaelli 2004), Broadstone Stream (Woodward et al. 2005b),
and Tuesday Lake 1984 (Jonsson et al. 2005) food webs. In the case of Tuesday Lake, 56 species were aggregated
into 21 functional groups with identical links (trophic species). We used the average body mass of all species in a
functional group as the body mass for that trophic species. Species with no observed predator or prey links were discarded.

The model of Emmerson and Raffaelli (2004) was used to estimate elements of the community matrix for both of
these food webs. For each predator-prey pair, the Lotka-Volterra coefficient qij was assumed to be a power law
function of the ratio of predator body size wj to prey body size wi:

qij p2q0

�wj

wi

�q1

. (A1)

The corresponding element qji is opposite in sign and reduced in magnitude by a factor ϵ j, representing the predator’s
feeding efficiency: qji p 2ϵj qij. The equilibrium biomass x�i of species i was estimated to be

x�i p x0w
q2
i . (A2)

The community matrix elements were then calculated via aij p qij x�i . Parameter values were q0 p 7 # 1024, x0 p
95.92, q1 p 0.66, and q2 p 20.1836. A fixed efficiency of ϵ p 0.1 was used for all species.

The average number of species in these webs was 47 (range, 21–88), mean connectance was 0.24 (range, 0.11–
0.32), and average pairwise correlation r was 20.75 (range, 20.28 to 20.98).
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Ecopath with Ecosim (EwE)

The Ecosim community matrices were constructed in two steps. First, an Ecopath (Christensen and Pauly 1992)
model was set up, representing a balanced account of biomass flows through the ecosystem constrained by empirical
data on abundances, metabolic rates, and feeding preferences. From such a static Ecopath model, a dynamic Ecosim
model was derived by modeling energy flows as outcomes of population-dynamic processes (feeding, respiration,
mortality). This led to expressions for f(x), from which the community matrix can be computed. The time derivatives f(x)
were given by the derivt function of Ecosim. Numerically differentiating the output of this function with respect to the
biomass xj of species j gives the jth column of the community matrix.

The six marine food webs were (1) the Tampa Bay model, which is a subset consisting of 52 groups of the Gulf of
Mexico model (Walters et al. 2006); (2) the Georgia Strait (British Columbia) model (Dalsgaard et al. 1998), a model
consisting of 27 functional groups; (3) the Caribbean Reef model (50 groups; Opitz 1996); (4) the Northeast Pacific
model (40 groups; Guénette and Christensen 2005); (5) the Great Barrier Reef model (32 groups; Gribble 2005); and
(6) the Centre for Environment, Fisheries and Aquaculture Science (Cefas) North Sea model (70 groups; Mackinson
and Daskalov 2007). The EwE models for data sets 1–5 can be downloaded from the University of British Columbia
website (http://sources.ecopath.org; password required for 1 and 2 and may be found at http://www.ecopath.org/models
for 3–5). The model for data set 6 is available by contacting one of the Cefas authors.

All of these food webs contain a substantial number of nonpredator-prey interactions, where either aij and aji have
the same sign or one of aij and aji is 0 and the other is not 0. The Tampa Bay and North Sea models contain
multistanza (i.e., age-structured) groups for the same species. Each stanza is a separate node and a part of the population of
stanza m of species n flows into stanza m 1 1 of species n, creating a (1, 0) type link. Thus, it is not possible to order the
species so that all elements in the lower matrix triangle are positive and all elements in the upper matrix triangle are
negative. We therefore designed the randomization algorithms (see below) so that they can be applied to any
community matrix, regardless of sign structure.

The average number of species in these webs was 45 (range, 27–70), mean connectance was 0.56 (range, 0.34–
0.70), and average pairwise correlation r was 20.057 (range, 20.0097 to 20.28).

Stability Criteria

The values of d0 in the stability criteria of equations (3) and (4) were calculated for each empirically derived
community matrix. In these equations, S is the number of species in the matrix; C is the connectance (i.e., the number
of links divided by S(S 2 1)); j is the standard deviation of the nonzero off-diagonal matrix elements; E and V are
the mean and variance, respectively, of all off-diagonal elements; and r is the pairwise correlation (Tang et al. 2014):

rp
E(aijaji)2E2

V
. (A3)

The stability criterion in equation (3) is valid only for matrices where (SV )1/2(1 1 r) 1 SE (Tang et al. 2014). This
was checked and found to be true for all of our empirically derived community matrices.
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Appendix B from A. James et al., “Constructing Random Matrices
to Represent Real Ecosystems”
(Am. Nat., vol. 185, no. 5, p. 000)

Randomization Algorithms

These algorithms randomize an S # S matrix A p [aij] to create an S # S matrix B p [bij]. Nl is the number of
nonzero off-diagonal elements, and C p Nl /[S(S 2 1)] is the fraction of off-diagonal elements that are nonzero. The
mean and standard deviation of the nonzero elements are m and j, respectively. The mean of the positive and negative
elements are m1 and m2. The number of elements involved in a cycle of length three is Nc (in cases where links are
not bidirectional—i.e., only one of aij and aji is nonzero—an element is considered to be in a cycle regardless of the
signs of the element); the number of nonzero elements not involved in a cycle of length three is N0 p Nl 2 Nc.

Off-Diagonal Algorithms

All of the off-diagonal algorithms hold the diagonal elements 0. Any randomization that resulted in a species having
no interactions (i.e., every entry in a row or column was 0) or that contained no cycles was rejected, as these
randomizations have a 0 leading eigenvalue. Algorithms used in figures 2 and 3 are as follows:

A. Random topology; randomly generated entries. Each randomization has Nl entries sampled from a normal
distribution N (0, j2). Entries are positioned randomly.

B. Random topology with sign structure; randomly generated entries. Each randomization has Nl randomly
positioned entries. Positive (negative) entries are sampled from the half-normal distribution with mean m1 (m2).
For every element pair (aij, aji) (with i ! j) in the empirically derived matrix with a particular sign structure—that
is, (1,1), (1,2), (2, 0), and so on—there is a random pair (bkl, blk) (with k ! l) with the same sign
structure.

C. Empirical topology; randomly generated entries. An element bij is nonzero if and only if the corresponding
element in the empirically derived matrix, aij, is nonzero. Furthermore, sign(aij) p sign(bij). Positive (negative)
entries are sampled from the half-normal distribution with mean m1 (m2).

D. Random topology; randomly generated entries preserving row structure. Each randomization has Nl entries
placed at random. The randomized matrix contains the same proportion of each pair type ((1,1) (2, 0), (1,2),
etc.) as the original matrix. The mean of the positive (negative) entries of row i of the empirically derived matrix
is mi1 (mi2). Where there are no entries of that sign in a row, the value of mi5 from a populated row (chosen at
random) is used instead. Positive (negative) entries in row i of the randomized matrix are sampled from a normal
distribution with mean mi1 (mi2) and coefficient of variation 0.2.

E. Random topology; empirical entries (paired). Each element aij, where i ! j, is moved to element bkl, where k ! l.
For every move of aij to bkl, there is a corresponding move of aji to blk, preserving the pair structure of the
empirically derived matrix.

F. Empirical topology; empirical entries (paired). Each element pair (aij, aji), where i ! j, is swapped with an
element pair (akl, alk), where k ! l, that has the same sign structure, that is, (1,1), (2,1), (0,2), and so on.

G. Empirical topology; empirical entries (not paired). Every positive element is swapped with another positive
element. Every negative element is swapped with another negative element.

H. Random topology; empirical entries (constrained within rows/columns). This algorithm permutes elements of
the empirically derived matrix within rows while preserving (aij, aji) pairs. Most of the empirically derived
community matrices are organized with top predators in the upper rows and basal resources in the lower rows.
This tends to lead a triangular structure in the matrix, where the lower-left triangle contains predominantly
negative elements and the upper-right triangle contains predominantly positive elements. This means that the
lower triangle typically contains elements that have, on average, a larger magnitude than the elements in the
upper triangle. The row structure of the empirically derived matrices therefore tends to be stronger in the lower
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triangle, so we designed the algorithm described above to preserve row structure in the lower triangle (and
therefore column structure in the upper triangle).
Each nonzero lower triangle element aij (where i 1 j) is moved within the same row to bik (where i 1 k). To

preserve the pair structure of the original matrix, this move of aij to aik is accompanied by a corresponding move
of aji to bki.
We also tested a similar algorithm that preserved row structure in the upper triangle and column structure in

the lower triangle; this produced matrices with leading eigenvalues farther away from the leading eigenvalue of
the empirically derived matrix.

The randomization algorithms for figure 4 are as follows:

A (vertical axis). Random topology holding cycles of length three; empirical entries (paired). This is a constrained
version of randomization D from figures 2 and 3. The Nc elements that are part of a cycle of length
three are fixed (i.e., their position was not changed). The remaining N0 elements are moved as
described in D above.

A (horizontal axis). Random topology holding some entries; empirical entries (paired). This is a constrained
version of randomization D from figures 2 and 3. Nc elements are chosen at random. These
elements are fixed. The remaining N0 elements are moved as described in D above.

B (vertical axis). Empirical topology holding cycles of length three; empirical entries (paired). This is a constrained
version of randomization E from figures 2 and 3. The Nc elements that are part of a cycle of length
three are fixed. The remaining N0 elements are swapped as described in E above.

B (horizontal axis). Empirical topology holding some entries; empirical entries (paired). This is a constrained
version of randomization E from figures 2 and 3. Nc elements are chosen at random. These
elements are fixed. The remaining N0 elements are swapped as described in E above.

Table B1 gives a summary of the properties preserved by each algorithm and measures of the bias in d.

Diagonal Algorithm

In figure 5A, the diagonal elements were replaced with normally distributed random numbers with mean 0 and
variance j 2, that is, the variance of the nonzero off-diagonal elements.

Table B1: Properties preserved by each off-diagonal randomization algorithm

Figure Pairs Elements Topology Cycles Rows Limited changes E(error) P(under)

2A # # # # # # 2.29 .03
2B u # # # # # 1.7 .14
2C u u u # # # 1.24 .14
2D # # # # u # .24a .42a

2E u u # # # # 1.21 .13
2F u u u # # # 1.01 .16
2G u u # # # # 1.31 .12
2H u u # # u # .49 .29
4A (y) u u # u # u .70 .09
4A (x) u u # # # u .77 .05
4B (y) u u u u # u .24 .21
4B (x) u u u # # u .67 .08

Note: Pairs: bij ≠ 0 if and only if bji ≠ 0. Elements: the elements of the original matrix were permuted rather than using
random deviates from a probability distribution. Topology: the original network topology was preserved. Cycles: the positions
and weights of the cycles of length three was preserved. Rows: the row structure was preserved. Limited changes: the number of
elements of the original matrix that were moved was limited to be the same as in the corresponding cycle-preserving algorithm.
E(error) is the mean value of error p log10(lrand/lemp) of 200 realizations of the randomization scheme across the 21 empirically
derived matrices. P(under) is the proportion of realizations for which the error is negative. An unbiased randomization scheme
would have E(error) p 0 and P(under) p 0.5.

a Do not include freshwater webs, as this algorithm does not preserve pairwise structure and as expected gives very poor
results for these matrices.
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Figure B2: Distribution of error p log10(lrand/lemp) for the four randomization algorithms used in figure 4. Figure 4A plots algorithm A
against algorithm B; figure 4B plots algorithm C against algorithm D. The food webs are plotted against the number of species S in the
web on the horizontal axis. Symbols indicate the method used to construct the community matrix: biomass flux p stars (successional
webs) or triangles (soil webs); predator-prey mass ratio p circles. Community matrices for which !90% of randomizations produce
distinct matrices are not shown; this includes all of the Ecopath with Ecosim webs.
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Appendix C from A. James et al., “Constructing Random Matrices
to Represent Real Ecosystems”
(Am. Nat., vol. 185, no. 5, p. 000)

Dynamic Model Bifurcation Analysis

Consider the generalized Lotka-Volterra model

dxi
dt

p xi

�
ri 1 o

S

jp1
qij xj

�
, ip 1, ::: , S, (C1)

where xi is the biomass density of species i, ri is the intrinsic growth rate of species i, and qij are Lotka-Volterra
coefficients. To prevent boundless growth of species i in isolation, the elements qii must not be positive. Equation (C1)
has an equilibrium point x� satisfying Qx� p2r. At this equilibrium, the diagonal elements of the community matrix
are aii p qiix�i . If x

�
i > 0 for all i, this equilibrium corresponds to the coexistence of all species. If, as the model

parameters are varied, x�j becomes negative for some j, there is a transcritical bifurcation, and a different equilibrium, with
x�j p 0, becomes stable. Hence, species j becomes extinct via a gradual decline of x�j to 0, and, at the transcritical
bifurcation, ajj p 0.

Now consider the effect of requiring the diagonal elements of the community matrix to be equal, aii p 2d ! 0.
Combining this with the equilibrium condition Qx� p2r shows that the intrinsic growth rates ri must satisfy

ri p do
S

jp1

qij

qjj
, ip 1, ::: , S, (C2)

which is equation (6) in the main text. This implies that basal species i, which are negatively influenced by their
interactions with other species and so have qij ! 0, will always have positive ri (recall that qjj ! 0). Top predators, which are
positively influenced by their interactions and so have qij 1 0 (i ≠ j), will typically have negative ri.

Under the constraint in equation (C2), the equilibrium equation Qx� 1 rp 0 becomes Q(x� 2 v)p 0, where vi p 2d/
qii, which is always positive since d 1 0 and qii ! 0. Hence, there is always a positive equilibrium with x�i p vi. This
equilibrium cannot undergo a transcritical bifurcation with another equilibrium for which v�j p 0 for some j. The only
way a species can become extinct is if the matrix Q becomes rank deficient, which leads to a line of nonisolated
equilibriums through the point x�p v. The positive equilibrium at x�p v suddenly becomes unstable, and an equilibrium
in which one or more species is 0 suddenly becomes stable.

Figure C1 illustrates the bifurcation structure of the model, with and without the constraint imposed by equation (C2),
for the simple two-species case. In the constrained model (fig. C1A–C1C), the two nullclines are forced to intersect
at the point (x1, x2)p (2 d=q11,2d=q22). As qij are varied, the equilibrium must always remain in the interior of the
positive quadrant because qii must be nonpositive and finite. Therefore, no transcritical bifurcations are possible. The
only way in which a species can become extinct is if the nullclines become parallel (in the two-species model, this
requires q12 and q21 to have the same sign). If this happens, the nullclines coincide and there is a line of nonisolated
equilibriums passing through (2d=q11,2d=q22). After this bifurcation, the equilibrium at (2d=q11,2d=q22) loses stability,
and one of the two species becomes extinct.

In the unconstrained model (fig. C1D–C1F), the slopes and intercepts of the nullclines can vary independently as
model parameters are varied. The coexistence equilibrium point can therefore move outside the positive quadrant and
lose stability via a transcritical bifurcation. For example, in the transition from figure C1D to C1E, species 2 gradually
declines to 0, at which point there is a transcritical bifurcation. The coexistence equilibrium moves outside the
feasible region, and the species 1 equilibrium (x1, x2)p (0,2r2=q22) becomes stable.

In figure C1, we used a competition model (q12, q21 ! 0) because, in the constrained two-species case, a bifurcation
can occur only when q12q21 p 1, which requires q12 and q21 to have the same sign. For models with more species,
the scenario is not limited to competitive interactions: bifurcations occur in the constrained model when the matrix
Q becomes rank deficient, which can happen in predator-prey models as well as competition models.

q 2015 by The University of Chicago. All rights reserved. DOI: 10.1086/680496

1



The result that constraining diagonal elements of the community matrix to be equal precludes transcritical
bifurcations is not particular to the generalized Lotka-Volterra model in equation (C1). Consider a more general
model where the rate of change of species i is

dxi
dt

p xi(ri 1 qiixi 1 hi(x)), ip 1, ::: , S (C3)

for some function hi(x). If we require that (xj p 08 j ≠ i ⇒ hi(x)p 0), then, as for the generalized Lotka-Volterra model,
each species, in isolation, behaves according to a logistic equation with intrinsic growth rate ri (which can be positive
or negative) and carrying capacity 2ri/qii 1 0. However, the generalized Lotka-Volterra model assumes that hi(x) is a
linear function of xi, whereas in equation (C3) the interaction terms contained in hi(x) can be nonlinear, for example,
representing a type 2 response. The diagonal elements of the Jacobian matrix are

aii p ri 1 2qiixi 1 hi(x)1 xi
∂hi

∂xi
. (C4)

Using the equilibrium condition from setting equation (C3) equal to 0, we obtain the diagonal elements of the
Jacobian matrix at equilibrium:

aii p x�i

�
qii 1

∂hi

∂xi

����
xpx�

�
. (C5)

This shows that if species i becomes extinct via a transcritical bifurcation (x�i p 0), then its diagonal element in the
community matrix (aii) must also be 0 at the bifurcation point. If instead the diagonal elements aii are all constrained to
equal 2d, then the equilibrium satisfies

x�i p2
d

qii 1 (∂hi=∂xi)jxpx�
. (C6)

Unlike in the constrained generalized Lotka-Volterra model, there is not always a unique positive equilibrium. There
may be zero, one, or more solutions to equation (C6), some of which may have x�i < 0 for some species. There may be
saddle-node bifurcations that change the number of equilibriums, and there may be Hopf bifurcations that change the
stability of equilibriums. Nevertheless, equation (C6) shows that it is impossible for x�i to pass smoothly through 0 as a
model parameter is varied. Hence, transcritical bifurcations are impossible.

In general, requiring the diagonal elements of the community matrix to be equal imposes S constraints (e.g., eq. [C2])
on the model parameters. This is equivalent to taking a codimension S slice through the full model parameter space.
The full parameter space is dominated by transcritical bifurcations, whereas the constrained codimension S parameter
space has no transcritical bifurcations. The constrained model is therefore a singular case. It does not give a representative
picture of the ways in which equilibriums can gain or lose stability.
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